Issue 22, 2019

Photochromic reaction in 3H-naphthopyrans studied by vibrational spectroscopy and quantum chemical calculations

Abstract

Structural details on the species involved in the photochromic reaction of 3H-naphthopyrans in solution have been formerly determined using NMR spectroscopy. Herein we show that at room temperature time-resolved FT-IR spectroscopy is a simple and efficient tool for structural characterization of colored species generated upon continuous UV light irradiation of the model compound 3H-naphthopyran: 3,3-diphenyl-3H-naphtho[2,1-b]pyran. In solution and in the polymer matrix phase, a colored species transoid-cis is formed after a single-photon excitation process, while transoid-trans is a secondary long-lived photoproduct generated after two-step excitation involving two photons. Understanding the reaction mechanism leading to long-lived colored species can help with the design of new 3H-naphthopyran derivatives structurally optimized for making a photochromic reaction free from transoid-trans products, which is often important for applications. Ab initio calculations show that photoinduced ring-opening followed by isomerization occurs on a multidimensional potential-energy surface. The barriers separating the considered isomeric forms, both in the ground and in the excited state, help to interpret the step-by-step dynamics of the photoprocesses. The system is composed of a variety of ground state equilibrium forms. Each of them is characterized by fast excited-state deactivation pathways which may drive the system through different conical intersection regions.

Graphical abstract: Photochromic reaction in 3H-naphthopyrans studied by vibrational spectroscopy and quantum chemical calculations

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2019
Accepted
13 May 2019
First published
14 May 2019

Phys. Chem. Chem. Phys., 2019,21, 11861-11870

Photochromic reaction in 3H-naphthopyrans studied by vibrational spectroscopy and quantum chemical calculations

S. Brazevic, S. Nizinski, R. Szabla, M. F. Rode and G. Burdzinski, Phys. Chem. Chem. Phys., 2019, 21, 11861 DOI: 10.1039/C9CP01451A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements