Issue 24, 2019

Attenuated total reflection Fourier-transform infrared spectral discrimination in human bodily fluids of oesophageal transformation to adenocarcinoma

Abstract

Diagnostic tools for the detection of early-stage oesophageal adenocarcinoma (OAC) are urgently needed. Our aim was to develop an accurate and inexpensive method using biofluids (plasma, serum, saliva or urine) for detecting oesophageal stages through to OAC (squamous; inflammatory; Barrett's; low-grade dysplasia; high-grade dysplasia; OAC) using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. ATR-FTIR spectroscopy coupled with variable selection methods, with successive projections or genetic algorithms (GA) combined with quadratic discriminant analysis (QDA) were employed to identify spectral biomarkers in biofluids for accurate diagnosis in a hospital setting of different stages through to OAC. Quality metrics (Accuracy, Sensitivity, Specificity and F-score) and biomarkers of disease were computed for each model. For plasma, GA-QDA models using 15 wavenumbers achieved 100% classification for four classes. For saliva, PCA-QDA models achieved 100% for the inflammatory stage and high-quality metrics for other classes. For serum, GA-QDA models achieved 100% performance for the OAC stage using 13 wavenumbers. For urine, PCA-QDA models achieved 100% performance for all classes. Selected wavenumbers using a Student's t-test (95% confidence interval) identified a differentiation of the stages on each biofluid: plasma (929 cm−1 to 1431 cm−1, associated with DNA/RNA and proteins); saliva (1000 cm−1 to 1150 cm−1, associated with DNA/RNA region); serum (1435 cm−1 to 1573 cm−1, associated with methyl groups of proteins and Amide II absorption); and, urine (1681 cm−1 to 1777 cm−1, associated with a high frequency vibration of an antiparallel β-sheet of Amide I and stretching vibration of lipids). Our methods have demonstrated excellent efficacy for a rapid, cost-effective method of diagnosis for specific stages to OAC. These findings suggest a potential diagnostic tool for oesophageal cancer and could be translated into clinical practice.

Graphical abstract: Attenuated total reflection Fourier-transform infrared spectral discrimination in human bodily fluids of oesophageal transformation to adenocarcinoma

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2019
Accepted
30 Oct 2019
First published
31 Oct 2019

Analyst, 2019,144, 7447-7456

Attenuated total reflection Fourier-transform infrared spectral discrimination in human bodily fluids of oesophageal transformation to adenocarcinoma

I. Maitra, C. L. M. Morais, K. M. G. Lima, K. M. Ashton, R. S. Date and F. L. Martin, Analyst, 2019, 144, 7447 DOI: 10.1039/C9AN01749F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements