Skip to main content
Log in

Fluorescence “off” and “on” signalling of esculetin in the presence of copper and thiol: a possible implication in cellular thiol sensing

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The interaction of the cupric ion with esculetin, a dihydroxy coumarin derivative, was studied by absorption and fluorescence spectroscopic methods in aqueous medium. Esculetin formed a complex in the presence of the cupric ion which was characterised by the shift in its absorption band from 350 nm to 389 nm and the quenching of its fluorescence intensity at 466 nm. From Job's plot and fluorescence quenching studies, the stoichiometry of the copper ion and esculetin in the complex was estimated to be 1: 2 respectively. Interestingly, the incubation of the Cu(ii)–esculetin complex with a thiol peptide, glutathione (GSH), showed restoration of the fluorescence intensity as well as absorption maxima to that of pure esculetin. Incubation with other common thiol and non-sulphur amino acids did not show a similar restoration of the photophysical properties of the complex except in the case of cysteine. Mechanistically, it was evident that two molecules of GSH were consumed in reducing the Cu(ii)–esculetin complex, which subsequently split into the copper ion and esculetin. In this process GSH was converted into oxidised GSH (GSSG) as evident from the mass spectroscopy and HPLC studies. The above florescence regeneration behaviour of the copper–esculetin system in the presence of GSH was also observed in the cellular system using Chinese hamster ovary (CHO) as model cells. In conclusion, these studies may find application in developing sensors for detecting the cellular thiol level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kumar, E. V. Anslyn, A selective turn-on fluorescent sensor for sulfur mustard simulants, J. Am. Chem. Soc., 2013, 135, 6338–6344.

    Article  CAS  PubMed  Google Scholar 

  2. L. Zhang, S. Dong, L. Zhu, Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically, Chem. Commun., 2007, 1891–1893.

    Google Scholar 

  3. K. Żamojć, M. Zdrowowicz, W. Wiczk, D. Jacewicz, L. Chmurzyński, Dihydroxycoumarins as highly selective fluorescent probes for the fast detection of 4-hydroxy-TEMPO in aqueous solution, RSC Adv., 2015, 5, 63807–63812.

    Article  CAS  Google Scholar 

  4. T. Sarwar, M. A. Husain, S. U. Rehman, H. M. Ishqi, M. Tabish, Multi-spectroscopic and molecular modelling studies on the interaction of esculetin with calf thymus DNA, Mol. BioSyst., 2015, 11, 522–531.

    Article  CAS  PubMed  Google Scholar 

  5. R. L. Atkins, D. E. Bliss, Substituted coumarins and azacoumarins synthesis and fluorescent properties, J. Org. Chem., 1978, 43, 1975–1980.

    Article  CAS  Google Scholar 

  6. G. A. Reynolds, K. H. Drexhage, New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers, Opt. Commun., 1975, 13, 222–225.

    Article  CAS  Google Scholar 

  7. K. Rechthaler, G. Köhler, Excited state properties and deactivation pathways of 7-aminocoumarins, Chem. Phys., 1994, 189, 99–116.

    Article  CAS  Google Scholar 

  8. D. G. Crosby, R. V. Berthold, Fluorescence spectra of some simple coumarins, Anal. Biochem., 1962, 4, 349–357.

    Article  CAS  PubMed  Google Scholar 

  9. W. Jivaramonaikul, P. Rashatasakhon, S. Wanichwecharungruang, UVA absorption and photostability of coumarins, Photochem. Photobiol. Sci., 2010, 9, 1120–1125.

    Article  CAS  PubMed  Google Scholar 

  10. S. Dragojević, V. Šunjić, V. Bencetić-Mihaljević, J. Ralić, M. Mesić, I. J. Elenkov, A. F. Sučić, A. Č. Klonkay, L. Lerman, M. Ilijaš, V. Gabelica-Marković, I. Malnar, Determination of aqueous stability and degradation products of series of coumarin dimers, J. Pharm. Biomed. Anal., 2011, 54, 37–47.

    Article  PubMed  CAS  Google Scholar 

  11. H. M. Revankar, S. N. A. Bukhari, G. B. Kumar, H. Qin, Coumarins scaffolds as COX inhibitors, Bioorg. Chem., 2017, 71, 146–159.

    Article  CAS  PubMed  Google Scholar 

  12. B. D. Wagner, The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems, Molecules, 2009, 14, 210–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. A. Haidekker, T. P. Brady, D. Lichlyter, E. A. Theodorakis, Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes, Bioorg. Chem., 2005, 33, 415–425.

    Article  CAS  PubMed  Google Scholar 

  14. T. Moriya, Excited-state reaction of coumarins VII. The solvent-dependent fluorescence of 7-hydroxycoumarins, Bull. Chem. Soc. Jpn., 1988, 61, 1873–1886.

    Article  CAS  Google Scholar 

  15. N. Li, Y. Xiang, A. Tong, Highly sensitive and selective “turn-on” fluorescent chemodosimeter for Cu2+ in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin, Chem. Commun., 2010, 3363–3365.

    Google Scholar 

  16. M. H. Kim, H. H. Jang, S. Yi, S. Chang, M. S. Han, Coumarin-derivative-based off–on catalytic chemodosimeter for Cu2+ ions, Chem. Commun., 2009, 4838–4840.

    Google Scholar 

  17. Z. Yang, Z. Liu, Y. Chen, X. Wang, W. He, Y. Lu, A new ratiometric and colorimetric chemosensor for cyanide anion based on Coumarin–hemicyanine hybrid, Org. Biomol. Chem., 2012, 10, 5073–5076.

    Article  CAS  PubMed  Google Scholar 

  18. K. Kaur, R. Saini, A. Kumar, V. Luxami, N. Kaur, P. Singh, S. Kumar, Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols, Coord. Chem. Rev., 2012, 256, 1992–2028.

    Article  CAS  Google Scholar 

  19. J. Du, M. Hu, J. Fan, X. Peng, Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media, Chem. Soc. Rev., 2012, 41, 4511–4535.

    Article  CAS  PubMed  Google Scholar 

  20. M. G. Choi, Y. H. Kim, J. E. Namgoong, S. Chang, Hg2+-selective chromogenic and fluorogenic chemodosimeter based on thiocoumarins, Chem. Commun., 2009, 3560–3562.

    Google Scholar 

  21. J. E. Park, M. G. Choi, S. Chang, Colorimetric and fluorescent signaling of Au3+ by desulfurization of thiocoumarin, Inorg. Chem., 2012, 51, 2880–2884.

    Article  CAS  PubMed  Google Scholar 

  22. C. Wu, J. Wang, J. Shen, C. Bi, H. Zhou, Coumarin-based Hg2+ fluorescent probe: synthesis and turn-on fluorescence detection in neat aqueous solution, Sens. Actuators, B, 2017, 243, 678–683.

    Article  CAS  Google Scholar 

  23. D. Maity, T. Govindaraju, A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous medium, Chem. Commun., 2012, 48, 1039–1041.

    Article  CAS  Google Scholar 

  24. J. Wu, W. Liu, X. Zhuang, F. Wang, P. Wang, S. Tao, X. Zhang, S. Wu, S. Lee, Fluorescence turn on of coumarin derivatives by metal cations: A new signaling mechanism based on C=N isomerization, Org. Lett., 2007, 9, 33–36.

    CAS  PubMed  Google Scholar 

  25. H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim, S. Yan, J. Y. Lee, J. H. Lee, T. Joo, J. S. Kim, Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells, J. Am. Chem. Soc., 2009, 131, 2008–2012.

    Article  CAS  PubMed  Google Scholar 

  26. R. J. P. Williams, Role of transition metal ions in biological processes, R. Inst. Chem., Rev., 1968, 1, 13–38.

    Article  Google Scholar 

  27. M. Bost, S. Houdart, M. Oberli, E. Kalonji, J. Huneau, I. Margaritis, Dietary copper and human health: Current evidence and unresolved issues, J. Trace Elem. Med. Biol., 2016, 35, 107–115.

    Article  CAS  PubMed  Google Scholar 

  28. R. N. Mukherjee, The bioinorganic chemistry of copper, Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2003, 42, 2175–2184.

    Google Scholar 

  29. A. Gupte, R. J. Mumper, Elevated copper and oxidative stress in cancer cells as a target for cancer treatment, Cancer Treat. Rev., 2009, 35, 32–46.

    Article  CAS  PubMed  Google Scholar 

  30. C. T. Sheline, E. H. Choi, J. S. Kim-Han, L. L. Dugan, D. W. Choi, Cofactors of mitochondrial enzymes attenuate copper-induced death in vitro and in vivo, Ann. Neurol., 2002, 52, 195–204.

    Article  CAS  PubMed  Google Scholar 

  31. S. Puig, D. J. Thiele, Molecular mechanisms of copper uptake and distribution, Curr. Opin. Chem. Biol., 2002, 6, 171–180.

    Article  CAS  PubMed  Google Scholar 

  32. M. Zeeshan, A. Murugadas, S. Ghaskadbi, R. B. Rajendran, M. A. Akbarsha, ROS dependent copper toxicity in Hydra-biochemical andmolecular study, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2016, 185–186, 1–12.

    Google Scholar 

  33. C. Saporito-Magriñá, R. Musacco-Sebio, J. M. Acosta, S. Bajicoff, P. Paredes-Fleitas, A. Boveris, M. G. Repetto, Rat liver mitochondrial dysfunction by addition of copper(II) or iron(III) ions, J. Inorg. Biochem., 2017, 166, 5–11.

    Article  PubMed  CAS  Google Scholar 

  34. V. Kumar, J. Kalita, H. K. Bora, U. K. Misra, Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model, Toxicol. Appl. Pharmacol., 2016, 293, 37–43.

    Article  CAS  PubMed  Google Scholar 

  35. K. Lee, J. Park, H. Park, Y. K. Chung, S. B. Park, H. Kim, I. Shin, J. Hong, Regenerative fluorescence “turn-on” probe for biothiols through Cu(II)/Cu(I) redox conversion, Sens. Actuators, B, 2016, 237, 256–261.

    Article  CAS  Google Scholar 

  36. C. Sivasankar, N. Sadhukhan, J. K. Bera, A. G. Samuelson, Is copper(I) hard or soft? A density functional study of mixed ligand complexes, New J. Chem., 2007, 31, 385–393.

    Article  CAS  Google Scholar 

  37. H. K. Baek, R. A. Holwerda, An S-bonded adduct of cysteine with the [Tris(2-pyridylmethyl)amine]copper(II) ion, Inorg. Chem., 1983, 22, 3452–3456.

    Article  CAS  Google Scholar 

  38. H. B. Singh, R. K. Negi, S. Srivastava, Binary and ternary complexes of copper(II) with some dihydroxycoumarins, Proc. Indian Acad. Sci. (Chem. Sci.), 1981, 90, 141–146.

    CAS  Google Scholar 

  39. G. He, J. Li, L. Yang, C. Hou, T. Ni, Z. Yang, X. Qian, C. Li, The synthesis of a coumarin carbohydrazide dinuclear copper complex based fluorescence probe and its detection of thiols, PLoS One, 2016, 11, e0148026, DOI: 10.1371/journal.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. K. An, K. H. Park, K. Jun, A new coumarin-based colorimetric and fluorometric sensor for Cu2+, Bull. Korean Chem. Soc., 2014, 35, 2183–2185.

    Article  CAS  Google Scholar 

  41. N. Roy, S. Nath, A. Dutta, P. Mondal, P. C. Paul, T. S. Singh, A highly efficient and selective coumarin based fluorescent probe for colorimetric detection of Fe3+ and fluorescence dual sensing of Zn2+ and Cu2+, RSC Adv., 2016, 6, 63837–63847.

    Article  CAS  Google Scholar 

  42. Z. Hu, L. Sun, Y. Gu, Y. Jiang, A sensitive and selective fluorescent probe for detection of glutathione in the presence of Cu2+ and its application to biological imaging, Sens. Actuators, B, 2015, 212, 220–224.

    Article  CAS  Google Scholar 

  43. C. Xu, H. Li, B. Yin, A colorimetric and ratiometric fluorescent probe for selective detection and cellular imaging of glutathione, Biosens. Bioelectron., 2015, 72, 275–281.

    Article  CAS  PubMed  Google Scholar 

  44. C. Chen, W. Liu, C. Xu, W. Liu, A colorimetric and fluorescent probe for detecting intracellular GSH, Biosens. Bioelectron., 2015, 71, 68–74.

    Article  CAS  PubMed  Google Scholar 

  45. P. V. Kumar, B. G. Singh, A. Kunwar, M. Iwaoka, K. I. Priyadarsini, Degradation of peroxynitrite by simple, recyclable selenolanes, Bull. Chem. Soc. Jpn., 2016, 89, 490–497.

    Article  CAS  Google Scholar 

  46. P. Verma, A. Kunwar, K. Arai, M. Iwaoka, K. I. Priyadarsini, Alkyl chain modulated cytotoxicity and antioxidant activity of bioinspired amphiphilic selenolanes, Toxicol. Res., 2016, 5, 434–445.

    Article  CAS  Google Scholar 

  47. Y. Zhang, Y. Fang, N. Xu, M. Zhang, G. Wu, C. Yao, A colorimetric and ratiometric fluorescent chemosensor based on furan-pyrene for selective and sensitive sensing Al3+, Chin. Chem. Lett., 2016, 27, 1673–1678.

    Article  CAS  Google Scholar 

  48. A. L. Person, A. Moncomble, J. Cornard, The complexation of AlIII, PbII, and CuII metal ions by esculetin: A spectroscopic and theoretical approach, J. Phys. Chem. A, 2014, 118, 2646–2655.

    Article  PubMed  CAS  Google Scholar 

  49. L. Zhang, S. Dong, L. Zhu, Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically, Chem. Commun., 2007, 1891–1893.

    Google Scholar 

  50. M. J. Sever, J. J. Wilker, Visible absorption spectra of metal–catecholate and metal–tironate complexes, Dalton Trans., 2004, 1061–1072.

    Google Scholar 

  51. A. E. Bolzán, Electrodeposition of copper on glassy carbon electrodes in the presence of picolinic acid, Electrochim. Acta, 2013, 113, 706–718.

    Article  CAS  Google Scholar 

  52. Y. Samuni, S. Goldstein, O. M. Dean, M. Berk, The chemistry and biological activities of N-acetylcysteine, Biochim. Biophys. Acta, 2013, 1830, 4117–4129.

    Article  CAS  PubMed  Google Scholar 

  53. L. B. Poole, The basics of thiols and cysteines in redox biology and chemistry, Free Radicals Biol. Med., 2015, 80, 148–157.

    Article  CAS  Google Scholar 

  54. M.-H. Chau, J. W. Nelson, Direct measurement of the equilibrium between glutathione and dithiothreitol by high performance liquid chromatography, FEBS Lett., 1991, 291, 296–298.

    Article  CAS  PubMed  Google Scholar 

  55. A. K. Tummanapelli, S. Vasudevan, Ab Initio MD simulations of the Brønsted acidity of glutathione in aqueous solutions: Predicting pKa shifts of the cysteine residue, J. Phys. Chem. B, 2015, 119, 15353–15358.

    Article  CAS  PubMed  Google Scholar 

  56. L. Königsberger, E. Königsberger, G. Hefte, P. M. May, Formation constants of copper(I) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye, Dalton Trans., 2015, 44, 20413–20425.

    Article  PubMed  CAS  Google Scholar 

  57. M. J. Walsh, S. D. Goodnow, G. E. Vezeau, L. V. Richter, B. A. Ahner, Cysteine enhances bioavailability of copper to marine phytoplankton, Environ. Sci. Technol., 2015, 49, 12145–12152.

    Article  CAS  PubMed  Google Scholar 

  58. M. J. Walsh, B. A. Ahner, Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes, J. Inorg. Biochem., 2013, 128, 112–123.

    Article  CAS  PubMed  Google Scholar 

  59. M.-Z. Zhang, H.-H. Han, S.-Z. Zhang, C.-Y. Wang, Y.-X. Lu, W.-H. Zhu, A new colorimetric and fluorescent probe with a large stokes shift for rapid and specific detection of biothiols and its application in living cells, J. Mater. Chem. B, 2017, 5, 8780–8785.

    Article  CAS  PubMed  Google Scholar 

  60. M. E. Aliaga, C. López-Alarcón, R. Bridi, H. Speisky, Redox-implications associated with the formation of complexes between copper ions and reduced or oxidized glutathione, J. Inorg. Biochem., 2016, 154, 78–88.

    Article  CAS  PubMed  Google Scholar 

  61. H. Speisky, M. Gómez, C. Carrasco-Pozo, E. Pastene, C. Lopez-Alarcón, C. Olea-Azar, Cu(I)–Glutathione complex: A potential source of superoxide radicals generation, Bioorg. Med. Chem., 2008, 16, 6568–6574.

    Article  CAS  PubMed  Google Scholar 

  62. M. E. Aliaga, C. Carrasco-Pozo, C. López-Alarcón, H. Speisky, The Cu(I)–glutathione complex: factors affecting its formation and capacity to generate reactive oxygen species, Transition Met. Chem., 2010, 35, 321–329.

    Article  CAS  Google Scholar 

  63. A. Katayamat, T. Kamidate, M. Morita, H. Watanabe, Spectrophotometric determination of aliphatic thiols based on redox color reaction with Copper(II) complex of 1,10-Phenanthroline in dimethyl sulfoxide, Anal. Sci., 1991, 7, 633–636.

    Article  Google Scholar 

  64. M. E. Aliaga, C. López-Alarcón, L. García-Río, M. Martín-Pastor, H. Speisky, Redox-changes associated with the glutathione-dependent ability of the Cu(II)–GSSG complex to generate superoxide, Bioorg. Med. Chem., 2012, 20, 2869–2876.

    Article  CAS  PubMed  Google Scholar 

  65. D. K. Johnson, M. J. Stevenson, Z. A. Almadidy, S. E. Jenkins, D. E. Wilcox, N. E. Grossoehme, Stabilization of Cu(I) for binding and calorimetric measurements in aqueous solution, Dalton Trans., 2015, 44, 16494–11650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. P. Bagchi, M. T. Morgan, J. Bacsa, C. J. Fahrni, Robust affinity standards for Cu(I) biochemistry, J. Am. Chem. Soc., 2013, 135, 18549–18559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. M. Tian, F. Guo, Y. Sun, W. Zhang, F. Miao, Y. Liu, G. Song, C. Ho, X. Yu, J. Z. Sun, W. Wong, A fluorescent probe for intracellular cysteine overcoming the interference by glutathione, Org. Biomol. Chem., 2014, 12, 6128–6133.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RGS thanks the Department of Atomic Energy, Government of India for providing a fellowship under the BARC-SPPU collaborative research programme. The authors are thankful to Ms Vishwa V. Gandhi for helping in the cell culture experiments. The authors are also thankful to Head, RPCD, BARC and Head, Chemistry Department, SPPU for their constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanu Barik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, R.G., Khan, A.A., Kunwar, A. et al. Fluorescence “off” and “on” signalling of esculetin in the presence of copper and thiol: a possible implication in cellular thiol sensing. Photochem Photobiol Sci 17, 1197–1205 (2018). https://doi.org/10.1039/c8pp00157j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00157j

Navigation