Skip to main content
Log in

Delayed release singlet oxygen sensitizers based on pyridone-appended porphyrins

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A new type of porphyrin photosensitizer capable of generating singlet oxygen upon irradiation, storing it through binding to pyridone subunits, followed by slow release at 20–40 °C, is reported. The timescale of singlet oxygen release can be varied depending on the pyridone group substitution pattern, forming endoperoxides of different stabilities. Modified tetra- and octa-substituted pyridone-porphyrins showed solubility in water, allowing for straightforward delivery into cells. The effect of delayed singlet oxygen formation due to endoperoxide decomposition was demonstrated on cancer cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, Photodynamic Therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  Google Scholar 

  2. S. B. Brown, E. A. Brown, and I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 497–508.

    Article  CAS  Google Scholar 

  3. A. P. Castano, T. N. Demidova, and M. R. Hamblin, Mechanisms in photodynamic therapy: Part three–Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction, Photodiagn. Photodyn. Ther., 2005, 2, 91–106.

    Article  CAS  Google Scholar 

  4. M. O. Senge, mTHPC–A Drug on its Way from Second to Third Generation Photosensitizer?, Photodiagn. Photodyn. Ther., 2012, 9, 170–179.

    Article  CAS  Google Scholar 

  5. J. F. Lovell, T. W. Liu, J. Chen, and G. Zheng, Activatable Photosensitizers for Imaging and Therapy, Chem. Rev., 2010, 110, 2839–2857.

    Article  CAS  Google Scholar 

  6. J. Moan, and K. Berg, The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 1991, 53, 549–553.

    Article  CAS  Google Scholar 

  7. M. K. Kuimova, G. Yahioglu, and P. R. Ogilby, Singlet oxygen in a cell: Spatially dependent lifetimes and quenching rate constants, J. Am. Chem. Soc., 2009, 131, 332–340.

    Article  CAS  Google Scholar 

  8. L. Yang, L. Zhu, W. Dong, Y. Cao, and Z. Rong, Oxygen-generating scaffolds: A new strategy for bone tissue engineering, Bone., 2013, 57, 322–323.

    Article  CAS  Google Scholar 

  9. A. Northup, and D. Cassidy, Calcium peroxide (CaO2) for use in modified Fenton chemistry, J. Hazard. Mater., 2008, 152, 1164–1170.

    Article  CAS  Google Scholar 

  10. C. Moureu, C. Dufraisse, and P. M. Dean, Un peroxyde organique dissociable: Le peroxyde de rubrène, C. R. Hebd. Seances Acad. Sci., 1926, 182, 1584–1587.

    Google Scholar 

  11. J.-M. Aubry, C. Pierlot, J. Rigaudy, and R. Schmidt, Reversible binding of oxygen to aromatic compounds, Acc. Chem. Res., 2003, 36, 668–675.

    Article  CAS  Google Scholar 

  12. M. A. Filatov, and M. O. Senge, Molecular devices based on reversible singlet oxygen binding in optical and photomedical applications, Mol. Syst. Des. Eng., 2016, 1, 258–272.

    Article  CAS  Google Scholar 

  13. F. Käsermann, and C. Kempf, Inactivation of enveloped viruses by singlet oxygen thermally generated from a polymeric naphthalene derivative, Antiviral Res., 1998, 38, 55–62.

    Article  Google Scholar 

  14. D. Posavec, M. Zabel, U. Bogner, G. Bernhardt, and G. Knör, Functionalized derivatives of 1,4-dimethylnaphthalene as precursors for biomedical applications: Synthesis, structures, spectroscopy and photochemical activation in the presence of dioxygen, Org. Biomol. Chem., 2012, 10, 7062–7069.

    Article  CAS  Google Scholar 

  15. M. A. Filatov, E. Heinrich, D. Busko, I. Z. Ilieva, K. Landfester, and S. Baluschev, Reversible oxygen addition on a triplet sensitizer molecule: Protection from excited state depopulation, Phys. Chem. Chem. Phys., 2015, 17, 6501–6510.

    Article  CAS  Google Scholar 

  16. M. Matsumoto, M. Yamada, and N. Watanabe, Reversible 1,4-cycloaddition of singlet oxygen to N-substituted 2-pyridones: 1,4-Endoperoxide as a versatile chemical source of singlet oxygen, Chem. Commun., 2005, 483–485.

    Google Scholar 

  17. S. Benz, S. Nötzli, J. S. Siegel, D. Eberli, and H. J. Jessen, Controlled oxygen release from pyridone endoperoxides promotes cell survival under anoxic conditions, J. Med. Chem., 2013, 56, 10171–10182.

    Article  CAS  Google Scholar 

  18. I. S. Turan, D. Yildiz, A. Turksoy, G. Gunaydin, and E. U. Akkaya, A bifunctional photosensitizer for enhanced fractional photodynamic therapy: Singlet oxygen generation in the presence and absence of light, Angew. Chem., Int. Ed., 2016, 55, 2875–2878.

    Article  CAS  Google Scholar 

  19. S. Kolemen, T. Ozdemir, D. Lee, G. Mi Kim, T. Karatas, J. Yoon, and E. U. Akkaya, Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: Towards a paradigm change in photodynamic therapy, Angew. Chem., Int. Ed., 2016, 55, 3606–3610.

    Article  CAS  Google Scholar 

  20. C. C. W. Changtong, D. W. Carney, L. Luo, C. A. Zoto, J. L. Lombardi, and R. E. Connors, A porphyrin molecule that generates, traps, stores, and releases singlet oxygen, J. Photochem. Photobiol., A., 2013, 260, 9–13.

    Article  CAS  Google Scholar 

  21. S. Kim, M. Fujitsuka, and T. Majima, Photochemistry of Singlet Oxygen Sensor Green, J. Phys. Chem. B., 2013, 117, 13985–13992.

    Article  CAS  Google Scholar 

  22. M. A. Filatov, S. Karuthedath, P. M. Polestshuk, H. Savoie, K. J. Flanagan, C. Sy, E. Sitte, M. Telitchko, F. Laquai, R. W. Boyle, and M. O. Senge, Generation of triplet excited states via photoinduced electron transfer in meso-anthra-BODIPY: Fluorogenic response toward singlet oxygen in solution and in vitro, J. Am. Chem. Soc., 2017, 139, 6282–6285.

    Article  CAS  Google Scholar 

  23. T. Mossman, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods., 1983, 65, 55–63.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Science Foundation Ireland (IvP 13/IA/1894), the European Commission (CONSORT, Grant No. 655142) and the Irish Research Council (GOIPG/2016/1250).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikhail A. Filatov or Mathias O. Senge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callaghan, S., Filatov, M.A., Sitte, E. et al. Delayed release singlet oxygen sensitizers based on pyridone-appended porphyrins. Photochem Photobiol Sci 16, 1371–1374 (2017). https://doi.org/10.1039/c7pp00244k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00244k

Navigation