Issue 7, 2017

Nanocomposite latexes containing layered double hydroxides via RAFT-assisted encapsulating emulsion polymerization

Abstract

Nanocomposite latex particles containing layered double hydroxide (LDH) platelets were synthesized using reversible addition–fragmentation chain transfer (RAFT) seeded emulsion polymerization. A random copolymer of acrylic acid (AA) and n-butyl acrylate (BA) was first synthesized by RAFT polymerization, and then electrostatically adsorbed on both nitrate- and carbonate-intercalated Mg2Al LDH particles to provide both colloidal stability and reactivatable groups from which the subsequent emulsion polymerization could proceed. The nitrate-intercalated LDH showed higher adsorption capacity than its carbonate counterpart because interlayer nitrate ions (in addition to those on the outer surface) were also displaced by the macroRAFT agent. The two macroRAFT agent-modified LDHs were then engaged in the emulsion polymerization of a hydrophobic monomer mixture (methyl acrylate (MA) and BA, 80/20 wt/wt) to form an encapsulating polymer shell. Cryogenic-transmission electron microscopy (cryo-TEM) showed successful encapsulation of the LDH nanoplatelets in the core of the latex particles, with the use of a hydrolytically-stable cationic initiator proving key to achieving high monomer conversions.

Graphical abstract: Nanocomposite latexes containing layered double hydroxides via RAFT-assisted encapsulating emulsion polymerization

Article information

Article type
Paper
Submitted
05 Oct 2016
Accepted
04 Jan 2017
First published
05 Jan 2017

Polym. Chem., 2017,8, 1233-1243

Nanocomposite latexes containing layered double hydroxides via RAFT-assisted encapsulating emulsion polymerization

A. C. Perreira, S. Pearson, D. Kostadinova, F. Leroux, F. D'Agosto, M. Lansalot, E. Bourgeat-Lami and V. Prévot, Polym. Chem., 2017, 8, 1233 DOI: 10.1039/C6PY01742H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements