Skip to main content
Log in

Modification of emission photon statistics from single quantum dots using metal/SiO2 core/shell nanostructures

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Emission photon statistics, i.e., single-photon and multi-photon emissions, of isolated QDs is required for tailoring optoelectronic applications. In this article, we demonstrate that the emission photon statistics can be modified by the control of the spectral overlap of the QDs with the localized surface plasmon resonance (LSPR) of the metal nanoparticle (metal NP) and by the distance between the QD and the metal NP. Moreover, the contribution to the modification of the emission photon statistics, which is the excitation and emission enhancements and the quenching generated by the spectral overlap and the distance, is elucidated. By fabricating well-defined SiO2-coated AgNPs and AuNPs (metal/SiO2), the spectral overlap originated from the metal species of Ag and Au and the distance constituted by the thickness of the SiO2 shell are controlled. The probability of single-photon emission of single QD was increased by the enhancement of the excitation rate via adjusting the distance using Ag/SiO2 while the single-photon emission was converted to multi-photon emission by the effect of exciton quenching at a short distance and a small spectral overlap. By contrast, the probability of multi-photon emission was increased by enhancement of the multi-photon emission rate and the quenching via the spectral overlap using Au/SiO2. These results indicated the fundamental finding to control emission photon statistics in single QDs by controlling the spectral overlap and the distance, and understand the interaction of plasmonic nanostructures and single QD systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Schaller, and V. Klimov, High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion, Phys. Rev. Lett., 2004, 92, 186601.

    Google Scholar 

  2. V. Klimov, Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals: Implications for Lasing and Solar Energy Conversion, J. Phys. Chem. B., 2006, 110, 16827–16845.

    Google Scholar 

  3. P. V. Kamat, Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics, J. Phys. Chem. Lett., 2013, 4, 908–918.

    Google Scholar 

  4. V. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots, Science., 2000, 287, 1011–1013.

    Google Scholar 

  5. V. Klimov, A. A. Mikhailovsky, H. Xu, A. V. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots, Science., 2000, 290, 314–317.

    Google Scholar 

  6. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, Emergence of Colloidal Quantum-dot Light-emitting Technologies, Nat. Photonics., 2013, 7, 13–23.

    Google Scholar 

  7. B. Lounis, H. A. Bechtel, D. Gerion, A. P. Alivisatos, and W. E. Moerner, Photon Antibunching in Single CdSe/ZnS Quantum Dot Fluorescence, Chem. Phys. Lett., 2000, 329, 399–404.

    Google Scholar 

  8. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Quantum Correlation among Photons from a Single Quantum Dot at Room Temperature, Nature., 2000, 406, 968–970.

    Google Scholar 

  9. G. Messin, J. P. Hermier, E. Giacobino, P. Desbiolles, and M. Dahan, Bunching and Antibunching in the Fluorescence of Semiconductor Nanocrystals, Opt. Lett., 2001, 26, 1891–1893.

    Google Scholar 

  10. G. Nair, J. Zhao, and M. G. Bawendi, Biexciton Quantum Yield of Single Semiconductor Nanocrystals from Photon Statistics, Nano Lett., 2011, 11, 1136–1140.

    Google Scholar 

  11. Y.-S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, Near-Unity Quantum Yields of Biexciton Emission from CdSe/CdS Nanocrystals Measured Using Single-Particle Spectroscopy, Phys. Rev. Lett., 2011, 106, 187401.

    Google Scholar 

  12. J. Zhao, O. Chen, D. B. Strasfeld, and M. G. Bawendi, Biexciton Quantum Yield Heterogeneities in Single CdSe (CdS) Core (shell) Nanocrystals and its Correlation to Exciton Blinking, Nano Lett., 2012, 12, 4477–4483.

    Google Scholar 

  13. B. D. Mangum, Y. Ghosh, J. A. Hollingsworth, and H. Htoon, Disentangling the Effects of Clustering and Multi-exciton Emission in Second-order Photon Correlation Experiments, Opt. Express., 2013, 21, 7419–7426.

    Google Scholar 

  14. B. D. Mangum, S. Sampat, Y. Ghosh, J. A. Hollingsworth, H. Htoon, and A. V. Malko, Influence of the Core Size on Biexciton Quantum Yield of Giant CdSe/CdS Nanocrystals, Nanoscale., 2014, 6, 3712–3720.

    Google Scholar 

  15. Y.-S. Park, W. K. Bae, J. M. Pietryga, and V. Klimov, Auger Recombination of Biexcitons and Negative and Positive Trions in Individual Quantum Dots, ACS Nano., 2014, 8, 7288–7296.

    Google Scholar 

  16. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science., 1998, 281, 2013–2016.

    Google Scholar 

  17. A. P. Alivisatos, The Use of Nanocrystals in Biological Detection, Nat. Biotechnol., 2004, 22, 47–52.

    Google Scholar 

  18. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, Quantum Dot Bioconjugates for Imaging, Labelling and Sensing, Nat. Mater., 2005, 4, 435–446.

    Google Scholar 

  19. S. Masuo, H. Naiki, S. Machida, and A. Itaya, Photon Statistics in Enhanced Fluorescence from a Single CdSe/ZnS Quantum Dot in the Vicinity of Silver Nanoparticles, Appl. Phys. Lett., 2009, 95, 193106.

    Google Scholar 

  20. H. Naiki, S. Masuo, S. Machida, and A. Itaya, Single-Photon Emission Behavior of Isolated CdSe/ZnS Quantum Dots Interacting with the Localized Surface Plasmon Resonance of Silver Nanoparticles, J. Phys. Chem. C., 2011, 115, 23299–23304.

    Google Scholar 

  21. S. Masuo, T. Tanaka, S. Machida, and A. Itaya, Photon Antibunching in Enhanced Photoluminescence of a Single CdSe/ZnS Nanocrystal by Silver Nanostructures, J. Photochem. Photobiol., A., 2012, 237, 24–30.

    Google Scholar 

  22. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, Plasmon-controlled Fluorescence: a New Paradigm in Fluorescence Spectroscopy, Analyst., 2008, 133, 1308–1346.

    Google Scholar 

  23. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Surface-plasmon-enhanced Light Emitters Based on InGaN Quantum Wells, Nat. Mater., 2004, 3, 601–605.

    Google Scholar 

  24. Y. Chen, K. Munechika, and D. S. Ginger, Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles, Nano Lett., 2007, 7, 690–696.

    Google Scholar 

  25. G. Laurent, and T. Asahi, Enhancement of Excimer Fluorescence from Thin Dye Film by Single Gold Nanoparticles, Chem. Lett., 2009, 38, 332–333.

    Google Scholar 

  26. K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, Spectral Control of Plasmonic Emission Enhancement from Quantum Dots near Single Silver Nanoprisms, Nano Lett., 2010, 10, 2598–2603.

    Google Scholar 

  27. D. Canneson, I. Mallek-Zouari, S. Buil, X. Quélin, C. Javaux, B. Dubertret, and J. P. Hermier, Enhancing the Fluorescence of Individual Thick Shell CdSe/CdS Nanocrystals by Coupling to Gold Structures, New J. Phys., 2012, 14, 063035.

    Google Scholar 

  28. S. J. LeBlanc, M. R. McClanahan, M. Jones, and P. J. Moyer, Enhancement of Multiphoton Emission from Single CdSe Quantum Dots Coupled to Gold Films, Nano Lett., 2013, 13, 1662–1669.

    Google Scholar 

  29. Y.-S. Park, Y. Ghosh, Y. Chen, A. Piryatinski, P. Xu, N. Mack, H.-L. Wang, V. Klimov, J. A. Hollingsworth, and H. Htoon, Super-Poissonian Statistics of Photon Emission from Single CdSe-CdS Core-Shell Nanocrystals Coupled to Metal Nanostructures, Phys. Rev. Lett., 2013, 110, 117401.

    Google Scholar 

  30. Y.-S. Park, Y. Ghosh, P. Xu, N. H. Mack, H.-L. Wang, J. A. Hollingsworth, and H. Htoon, Single-Nanocrystal Photoluminescence Spectroscopy Studies of Plasmon–Multiexciton Interactions at Low Temperature, J. Phys. Chem. Lett., 2013, 4, 1465–1470.

    Google Scholar 

  31. C. T. Yuan, Y. C. Wang, H. W. Cheng, H. S. Wang, M. Y. Kuo, M. H. Shih, and J. Tang, Modification of Fluorescence Properties in Single Colloidal Quantum Dots by Coupling to Plasmonic Gap Modes, J. Phys. Chem. C., 2013, 117, 12762–12768.

    Google Scholar 

  32. H.-W. Cheng, C.-T. Yuan, J.-S. Wang, T.-N. Lin, J.-L. Shen, Y.-J. Hung, J. Tang, and F.-G. Tseng, Modification of Photon Emission Statistics from Single Colloidal CdSe Quantum Dots by Conductive Materials, J. Phys. Chem. C., 2014, 118, 18126–18132.

    Google Scholar 

  33. S. Dey, Y. Zhou, X. Tian, J. A. Jenkins, O. Chen, S. Zou, and J. Zhao, An Experimental and Theoretical Mechanistic Study of Biexciton Quantum Yield Enhancement in Single Quantum Dots near Gold Nanoparticles, Nanoscale., 2015, 7, 6851–6858.

    Google Scholar 

  34. F. Wang, N. S. Karan, H. M. Nguyen, Y. Ghosh, C. J. Sheehan, J. A. Hollingsworth, and H. Htoon, Correlated Structural-optical Study of Single Nanocrystals in a Gap-bar Antenna: Effects of Plasmonics on Excitonic Recombination Pathways, Nanoscale., 2015, 7, 9387–9393.

    Google Scholar 

  35. S. Masuo, K. Kanetaka, R. Sato, and T. Teranishi, Direct Observation of Multiphoton Emission Enhancement from a Single Quantum Dot Using AFM Manipulation of a Cubic Gold Nanoparticle, ACS Photonics., 2016, 3, 109–116.

    Google Scholar 

  36. H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip, Nano Lett., 2016, 16, 5770–5778.

    Google Scholar 

  37. H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures, J. Phys. Chem. C., 2013, 117, 2455–2459.

    Google Scholar 

  38. C. I. Yoo, D. Seo, B. H. Chung, I. S. Chung, and H. Song, A Facile One-Pot Synthesis of Hydroxyl-Functionalized Gold Polyhedrons by a Surface Regulating Copolymer, Chem. Mater., 2009, 21, 939–944.

    Google Scholar 

  39. Y. Gao, {etet al.}, Hybrid Graphene-Giant Nanocrystal Quantum Dot Assemblies with Highly Efficient Biexciton Emission, Adv. Opt. Mater., 2015, 3, 39–43.

    Google Scholar 

  40. P. Bharadwaj, and L. Novotony, Spectral Dependence of Single Molecule Fluorescence Enhancement, Opt. Express., 2001, 15, 14266–14274.

    Google Scholar 

  41. P. Anger, P. Bharadwaj, and L. Novotony, Enhancement and Quenching of Single-Molecule Fluorescence, Phys. Rev. Lett., 2006, 96, 113002.

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Area “Strong Photons-Molecules Coupling Fields (No. 470)”; from the Ministry of Education, Culture, Sports, Science and Technology, Japan, a Grant-in-Aid for the Japan Society for the Promotion of Science (JSPS) Fellows (No. 12J08034 to HN) and a Grant-in-Aid for Scientific Research (No. 26390023 to SM) from JSPS. Additionally, we wish to thank Professor Dr Hitoshi Kasai and Assistant Professor Dr Tsunenobu Onodera at Tohoku University for preparation and characterization of metal/SiO2-QD systems and Professor Dr Noriaki Ikeda at the Kyoto Institute of Technology for use of their measurement setup.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naiki, H., Oikawa, H. & Masuo, S. Modification of emission photon statistics from single quantum dots using metal/SiO2 core/shell nanostructures. Photochem Photobiol Sci 16, 489–498 (2017). https://doi.org/10.1039/c6pp00342g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00342g

Navigation