Issue 3, 2016

Insight on the Li2S electrochemical process in a composite configuration electrode

Abstract

A novel, low cost and environmentally sustainable lithium sulfide–carbon composite cathode, suitably prepared by combining polyethylene oxide (PEO), LiCF3SO3 and Li2S–C powders is presented herein. The cathode is characterized in a lithium-metal cell employing a solution of LiCF3SO3 salt in dioxolane–dimethylether (DOL:DME) as the electrolyte. The detailed NMR investigation of the diffusion properties of the electrolyte is reported in order to determine its suitability for the proposed cell. The addition of LiNO3 to the electrolyte solution allows its practical application in a lithium sulfur cell using an Li2S–C-based cathode characterized by a specific capacity of about 500 mA h g−1 (with respect to the Li2S mass). The cell holds its optimal performances for over 70 cycles at a C/5 rate, with a steady state efficiency approaching 99%. The X-ray diffraction patterns of the cell upon operation suggest the reversibility of the Li2S electrochemical process, while the repeated electrochemical impedance spectroscopy (EIS) measurements indicate the suitability of the electrode–electrolyte interface in terms of low and stable cell impedance. Furthermore, the EIS study clarifies the activation process occurring at the Li2S cathode during the first charge process, leading to a decrease of cell polarization during the following cycles. The data reported here shed light on important aspects which should be considered for the efficient application of a Li2S cathode in lithium batteries.

Graphical abstract: Insight on the Li2S electrochemical process in a composite configuration electrode

Supplementary files

Article information

Article type
Paper
Submitted
30 Nov 2015
Accepted
22 Jan 2016
First published
25 Jan 2016

New J. Chem., 2016,40, 2935-2943

Insight on the Li2S electrochemical process in a composite configuration electrode

L. Carbone, R. Verrelli, M. Gobet, J. Peng, M. Devany, B. Scrosati, S. Greenbaum and J. Hassoun, New J. Chem., 2016, 40, 2935 DOI: 10.1039/C5NJ03402G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements