Issue 35, 2013

Tracking the formation of vaterite particles containing aminopropyl-functionalized silsesquioxane and their structure for bone regenerative medicine

Abstract

Vaterite particles containing aminopropyl-functionalized silsesquioxane (SiV) were prepared as osteogenic devices for bone regeneration. The SixV particles (x = 0, 2.6 and 4.9 wt%) were synthesized by reacting a slurry of calcium hydroxide with carbon dioxide gas in the presence of γ-aminopropyltriethoxysilane (APTES), a source of soluble silica which would genetically enhance osteogenesis. The obtained Si2.6V and Si4.9V particles were monodispersed with a diameter of 1.4 and 1.5 μm, respectively. The Si2.6V particles showed spherical morphologies. On the surface of the Si4.9V particle small particles were aggregated, resulting in the formation of irregular textures. Transmission electron microscopy of a sectioned Si2.6V particle revealed that the vaterite particles were present as lamellae with a length of 5–20 nm and surrounded by silsesquioxane from APTES. Moreover, the vaterite lamellae were relatively orientated to the c face of the unit lattice, where it is known to be highly polarized, compared to pure vaterite, due to the exposure of the uni-ionic plane with positive (Ca2+) or negative (CO32−) charge. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) revealed the co-existence of amorphous calcium carbonate (ACC) in the SiV particles. On contact with physiological pH buffer solution, the vaterite was transiently stabilized and subsequently dissolved and released after the dissolution of silsesquioxane from the particles. This stabilization time was significantly increased with the increase in silicon content. The vaterite was observed in Si2.6V particles up to 3 h of soaking, which extended up to 12 h in Si4.9V particles. The formation of the particles from the precursor gel was monitored by laser Raman spectroscopy and ATR-FTIR. During the initial 1 to 2 h of the aging step, maturation of ACC into vaterite and condensation of monomeric APTES molecules were found to begin simultaneously. These reactions proceeded up to 7 h of the analysis period. The condensation of hydrolyzed APTES is suggested to occur in the vicinity of growing vaterite, which might play a role in the enclosure of vaterite in silsesquioxanes.

Graphical abstract: Tracking the formation of vaterite particles containing aminopropyl-functionalized silsesquioxane and their structure for bone regenerative medicine

Article information

Article type
Paper
Submitted
24 Apr 2013
Accepted
04 Jul 2013
First published
05 Jul 2013

J. Mater. Chem. B, 2013,1, 4446-4454

Tracking the formation of vaterite particles containing aminopropyl-functionalized silsesquioxane and their structure for bone regenerative medicine

J. Nakamura, G. Poologasundarampillai, J. R. Jones and T. Kasuga, J. Mater. Chem. B, 2013, 1, 4446 DOI: 10.1039/C3TB20589D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements