Skip to main content
Log in

Photoswitchable fluorescent diheteroarylethenes: substituent effects on photochromic and solvatochromic properties

Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photoswitchable fluorescent diheteroarylethenes are promising candidates for applications in super-resolution molecular localization fluorescence microscopy thanks to their high quantum yields and fatigue-resistant photoswitching characteristics. We have studied the effect of varying substituents on the photophysical properties of six sulfone derivatives of diheteroarylethenes, which display fluorescence in one (closed form) of two thermally stable photochromic states. Electron-donating substituents displace the absorption and emission spectra towards the red without substantially affecting the fluorescence quantum yields. Furthermore, ethoxybromo, a very electron-donating substituent, stabilizes the excited state of the closed isomer to the extent of almost entirely inhibiting its cycloreversion. Multi-parameter Hammett correlations indicate a relationship between the emission maxima and electron-donating character, providing a useful tool in the design of future photochromic molecules. Most of the synthesized compounds exhibit small bathochromic shifts and shorter fluorescence lifetimes with an increase in solvent polarity. However, the ethoxybromo-substituted fluorescent photochrome is unique in its strong solvatochromic behaviour, constituting a photoactivatable (photochromic), fluorescent and highly solvatochromic small organic compound. The Catalán formalism identified solvent dipolarity as the principal basis of the solvatochromism, reflecting the highly polarized nature of this molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes and references

  1. S. W. Hell, Science, 2007, 316, 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  2. B. Huang, Curr. Opin. Chem. Biol., 2010, 14, 10–14.

    Article  CAS  PubMed  Google Scholar 

  3. T. Müller, C. Schumann and A. Kraegeloh, ChemPhysChem, 2012, 13, 1986–2000.

    Article  PubMed  CAS  Google Scholar 

  4. L. Shao, P. Kner, E. H. Rego and M. G. L. Gustafsson, Nat. Methods, 2011, 12, 1044–1046.

    Article  CAS  Google Scholar 

  5. A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs and H. Shroff, Nat. Methods, 2012, 9, 749–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. S. Lidke and K. A. Lidke, J. Cell Sci., 2012, 125, 2571–2580.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. T. Dertinger, R. Colyer, G. Iyer, S. Weiss and J. Enderlein, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 22287–22292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. B. Müller and J. Enderlein, Phys. Rev. Lett., 2010, 104, 198101.

    Article  PubMed  CAS  Google Scholar 

  9. J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer and P. Tinnefeld, Nano Lett., 2010, 10, 672–679.

    Article  CAS  PubMed  Google Scholar 

  10. D. M. Owen, D. J. Williamson, A. Magenau and K. Gaus, Nat. Commun., 2012, 3, 1256.

    Article  PubMed  CAS  Google Scholar 

  11. M. Lakadamyali, H. Babcock, M. Bates, X. Zhuang and J. Lichtman, PloS One, 2012, 7, e30826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. Henriques, C. Griffiths, E. Hesper Rego and M. M. Mhlanga, Biopolymers, 2011, 95, 322–331.

    Article  CAS  PubMed  Google Scholar 

  13. T. Ha and P. Tinnefeld, Annu. Rev. Phys. Chem., 2012, 63, 595–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. J. Lord, N. R. Conley, H.-L. D. Lee, S. Y. Nishimura, A. K. Pomerantz, K. A. Willets, Z. Lu, H. Wang, N. Liu, R. Samuel, R. Weber, A. Semyonov, M. He, R. J. Twieg and W. E. Moerner, ChemPhysChem, 2009, 10, 55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D. Bourgeois, A. Regis-Faro and V. Adam, Biochem. Soc. Trans., 2012, 40, 531–538.

    Article  CAS  PubMed  Google Scholar 

  16. K. Finan, B. Flottmann and M. Heilemann, in Methods in molecular biology, ed. A. A. Sousa and M. J. Kruhlak, Humana Press, Totowa, NJ, 2013, vol. 950, pp. 131–151.

    CAS  PubMed  Google Scholar 

  17. C.-J. Carling, J.-C. Boyer and N. R. Branda, Org. Biomol. Chem., 2012, 10, 6159–6168.

    Article  CAS  PubMed  Google Scholar 

  18. F. May, M. Peter, A. Hütten, L. Prodi and J. Mattay, Chem.–Eur. J., 2012, 18, 814–821.

    Article  CAS  PubMed  Google Scholar 

  19. T. Klein, S. van de Linde and M. Sauer, ChemBioChem, 2012, 13, 1861–1863.

    Article  CAS  PubMed  Google Scholar 

  20. K. Kolmakov, C. Wurm, M. V. Sednev, M. L. Bossi, V. N. Belov and S. W. Hell, Photochem. Photobiol. Sci., 2012, 11, 522–532.

    Article  CAS  PubMed  Google Scholar 

  21. P. Schäfer, S. van de Linde, J. Lehmann, M. Sauer and S. Doose, Anal. Chem., 2013, 85, 3393–3400.

    Article  PubMed  CAS  Google Scholar 

  22. M. Schwering, A. Kiel, A. Kurz, K. Lymperopoulos, A. Sprödefeld, R. Krämer, D.-P. Herten, Angew. Chem., Int. Ed., 2011, 50, 2940–2945.

    Article  CAS  Google Scholar 

  23. G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. De Vries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin and T. M. Jovin, Micros. Res. Tech., 2009, 72, 431–440.

    Article  CAS  Google Scholar 

  24. L. Giordano, T. M. Jovin, M. Irie, E. A. Jares-Erijman, J. Am. Chem. Soc., 2002, 124, 7481–7489.

    Article  CAS  PubMed  Google Scholar 

  25. S. A. Díaz, L. Giordano, T. M. Jovin, E. A. Jares-Erijman, Nano Lett., 2012, 12, 3537–3544.

    Article  PubMed  CAS  Google Scholar 

  26. Y. Yan, M. E. Marriott, C. Petchprayoon and G. Marriott, Biochem. J., 2011, 433, 411–422.

    Article  CAS  PubMed  Google Scholar 

  27. K. Uno, H. Niikura, M. Morimoto, Y. Ishibashi, H. Miyasaka and M. Irie, J. Am. Chem. Soc., 2011, 133, 13558–13564.

    Article  CAS  PubMed  Google Scholar 

  28. J. Qiu, L. Wang, M. Liu, Q. Shen and J. Tang, Tetrahedron Lett., 2011, 52, 6489–6491.

    Article  CAS  Google Scholar 

  29. Y.-C. Jeong, S. I. Yang, K.-H. Ahn and E. Kim, Chem. Commun., 2005, 19, 2503–2505.

    Article  CAS  Google Scholar 

  30. G. Liu, S. Pu and X. Wang, Tetrahedron, 2010, 66, 8862–8871.

    Article  CAS  Google Scholar 

  31. S. Pu, R. Wang, G. Liu, W. Liu, S. Cui and P. Yan, Dyes Pigm., 2012, 94, 195–206.

    Article  CAS  Google Scholar 

  32. K. Morimitsu and S. Kobatake, Mol. Cryst. Liq. Cryst., 2005, 431, 151–154.

    Article  CAS  Google Scholar 

  33. S. Pu, C. Fan, W. Miao and G. Liu, Dyes Pigm., 2010, 84, 25–35.

    Article  CAS  Google Scholar 

  34. M. Irie, K. Sakemura, M. Okinaka and K. Uchida, J. Org. Chem., 1995, 60, 8305–8309.

    Article  CAS  Google Scholar 

  35. Y. Takagi, T. Kunishi, T. Katayama, Y. Ishibashi, H. Miyasaka, M. Morimoto and M. Irie, Photochem. Photobiol. Sci., 2012, 11, 1661–1665.

    Article  CAS  PubMed  Google Scholar 

  36. C. Hansch, A. Leo and W. Taft, Chem. Rev., 1991, 91, 165–195.

    Article  CAS  Google Scholar 

  37. L. P. Hammett, Struct. React. Benzene Compounds, 1937, 59, 96–103.

    CAS  Google Scholar 

  38. H. Neuvonen, K. Neuvonen, A. Koch, E. Kleinpeter and P. Pasanen, J. Org. Chem., 2002, 67, 6995–7003.

    Article  CAS  PubMed  Google Scholar 

  39. R. Contreras, J. Andrés, L. R. Domingo, R. Castillo, P. Pérez, Tetrahedron, 2005, 61, 417–422.

    Article  CAS  Google Scholar 

  40. Spectral Database for Organic Compounds (National Institute of Advanced Industrial Science and Technology) http://riodb01.ibase.aist.go.jp/sbds/ (accessed November 29, 2012).

  41. X. Cui, Y. Zhang, F. Shi and Y. Deng, Chemistry, 2011, 17, 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  42. D. Guillaumont, T. Kobayashi, K. Kanda, H. Miyasaka, K. Uchida, S. Kobatake, K. Shibata, S. Nakamura and M. Irie, J. Phys. Chem. A, 2002, 106, 7222–7227.

    Article  CAS  Google Scholar 

  43. Y. Asano, A. Murakami, T. Kobayashi, A. Goldberg, D. Guillaumont, S. Yabushita, M. Irie and S. Nakamura, J. Am. Chem. Soc., 2004, 126, 12112–12120.

    Article  CAS  PubMed  Google Scholar 

  44. M. Boggio-Pasqua, M. Ravaglia, M. J. Bearpark, M. Garavelli and M. A. Robb, J. Phys. Chem. A, 2003, 107, 11139–11152.

    Article  CAS  Google Scholar 

  45. Y. Ishibashi, T. Umesato, S. Kobatake, M. Irie and H. Miyasaka, J. Phys. Chem. C, 2012, 116, 4862–4869.

    Article  CAS  Google Scholar 

  46. S. M. Polyakova, V. N. Belov, M. L. Bossi and S. W. Hell, Eur. J. Org. Chem., 2011, 3301–3312.

    Google Scholar 

  47. C. Reichardt, Chem. Rev., 1994, 94, 2319–2358.

    Article  CAS  Google Scholar 

  48. J. Catalán, J. Phys. Chem. B, 2009, 113, 5951–5960.

    Article  PubMed  CAS  Google Scholar 

  49. L. Giordano, V. V. Shvadchak, J. A. Fauerbach, E. A. Jares-Erijman and T. M. Jovin, J. Phys. Chem. Lett., 2012, 3, 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  50. Y.-C. Jeong, D. G. Park, I. S. Lee, S. I. Yang, K.-H. Ahn, J. Mater. Chem., 2009, 19, 97–103.

    Article  CAS  Google Scholar 

  51. S. Fery-Forgues, J.-P. Fayet and A. Lopez, J. Photochem. Photobiol., A: Chem., 1993, 70, 229–243.

    Article  CAS  Google Scholar 

  52. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, U.S.A., 2nd edn, 1999.

    Book  Google Scholar 

  53. S. Kobatake, Y. Terakawa and H. Imagawa, Tetrahedron, 2009, 65, 6104–6108.

    Article  CAS  Google Scholar 

  54. Y.-C. Jeong, S. I. Yang, E. Kim, K.-H. Ahn, Tetrahedron, 2006, 62, 5855–5861.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Jovin.

Additional information

Deceased September 29, 2011.

Electronic supplementary information (ESI) available: Synthetic procedures; 1H and 13C NMR spectra for compounds; description of Hammett constant calculation; linear fits equation for Fig. 2; solvent dependence tables; Catalán fits; photoconversion calculations; fatigue and photocycles; custom built spectrometer and photoconversion apparatus overview. See DOI: 10.1039/c3pp50374g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillanders, F., Giordano, L., Díaz, S.A. et al. Photoswitchable fluorescent diheteroarylethenes: substituent effects on photochromic and solvatochromic properties. Photochem Photobiol Sci 13, 603–612 (2014). https://doi.org/10.1039/c3pp50374g

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50374g

Navigation