Skip to main content
Log in

Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Two citric acid crosslinked γ-cyclodextrin oligomers (pγ-CyD) with a MW of 21-33 kDa and 10-15 γ-CyD units per molecule were prepared by following green chemistry methods and were fully characterized. The non-covalent association of doxorubicin (DOX) with these macromolecules was investigated in neutral aqueous medium by means of circular dichroism (CD), UV-vis absorption and fluorescence. Global analysis of multiwavelength spectroscopic CD and fluorescence titration data, taking into account the DOX monomer-dimer equilibrium, evidenced the formation of 1?:?1 and 1?:?2 pγ-CyD unit-DOX complexes. The binding constants are 1-2 orders of magnitude higher than those obtained for γ-CyD and depend on the characteristics of the oligomer batch used. The concentration profiles of the species in solution evidence the progressive monomerization of DOX with increasing oligomer concentration. Confocal fluorescence imaging and spectral imaging showed a similar drug distribution within the MCF-7 cell line incubated with either DOX complexed to pγ-CyD or free DOX. In both cases DOX is taken up into the cell nucleus without any degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dal Ben, M. Palumbo, G. Zagotto, G. Capranico and S. Moro, DNA topoisomerase II structures and anthracycline activity: insights into ternary complex formation, Curr. Pharm. Des., 2007, 13, 2766–2780.

    Article  CAS  PubMed  Google Scholar 

  2. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo and L. Gianni, Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity, Pharmacol. Rev., 2004, 56, 185–229

    Article  CAS  PubMed  Google Scholar 

  3. A. Gabizon, H. Shmeeda and Y. Barenholz, Pharmacokinetics of pegylated liposomal doxorubicin - Review of animal and human studies, Clin. Pharmacokinet., 2003, 42, 419–436

    Article  CAS  PubMed  Google Scholar 

  4. A. A. Gabizon, Pegylated liposomal doxorubicin: Metamorphosis of an old drug into a new form of chemotherapy, Cancer Invest., 2001, 19, 424–436.

    Article  CAS  PubMed  Google Scholar 

  5. M. E. Davis and M. E. Brewster, Cyclodextrin-based pharmaceutics: Past, present and future, Nat. Rev. Drug Discovery, 2004, 3, 1023–1035

    Article  CAS  PubMed  Google Scholar 

  6. V. Villari, A. Mazzaglia, R. Darcy, C. M. O’Driscoll and N. Micali, Nanostructures of Cationic Amphiphilic Cyclodextrin Complexes with DNA, Biomacromolecules, 2013, 14, 811–817.

    Article  CAS  PubMed  Google Scholar 

  7. F. van de Manakker, T. Vermonden, C. F. van Nostrum and W. E. Hennink, Cyclodextrin-Based Polymeric Materials: Synthesis, Properties, and Pharmaceutical/Biomedical Applications, Biomacromolecules, 2009, 10, 3157–3175.

    Article  PubMed  CAS  Google Scholar 

  8. P. Y. Grosse, F. Bressolle and F. Pinguet, Methyl-beta-cyclodextrin in HL-60 parental and multidrug-resistant cancer cell lines: effect on the cytotoxic activity and intracellular accumulation of doxorubicin, Cancer Chemother. Pharmacol., 1997, 40, 489–494

    Article  CAS  PubMed  Google Scholar 

  9. P. Y. Grosse, F. Bressolle and F. Pinguet, Antiproliferative effect of methyl-beta-cyclodextrin in vitro and in human tumour xenografted athymic nude mice, Br. J. Cancer, 1998, 78, 1165–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. P. Y. Grosse, F. Bressolle and F. Pinguet, In vitro modulation of doxorubicin and docetaxel antitumoral activity by methyl-beta-cyclodextrin, Eur. J. Cancer, 1998, 34, 168–174

    Article  CAS  PubMed  Google Scholar 

  11. P. Y. Grosse, F. Bressolle, P. Vago, J. Simony-Lafontaine, M. Radal and F. Pinguet, Tumor cell membrane as a potential target for methyl-beta-cyclodextrin, Anticancer Res., 1998, 18, 379–384

    CAS  PubMed  Google Scholar 

  12. A. Al-Omar, S. Abdou, L. De Robertis, A. Marsura and C. Finance, Complexation study and anticellular activity enhancement by doxorubicin-cyclodextrin complexes on a multidrug-resistant adenocarcinoma cell line, Bioorg. Med. Chem. Lett., 1999, 9, 1115–1120.

    Article  CAS  PubMed  Google Scholar 

  13. S. Tilloy, V. Monnaert, L. Fenart, H. Bricout, R. Cecchelli and E. Monflier, Methylated beta-cyclodextrin as P-gp modulators for deliverance of doxorubicin across an in vitro model of blood-brain barrier, Bioorg. Med. Chem. Lett., 2006, 16, 2154–2157

    Article  CAS  PubMed  Google Scholar 

  14. V. Monnaert, D. Betbeder, L. Fenart, H. Bricout, A. M. Lenfant, C. Landry, R. Cecchelli, E. Monflier and S. Tilloy, Effects of gamma- and hydroxypropyl-gamma-cyclodextrins on the transport of doxorubicin across an in vitro model of blood-brain barrier, J. Pharmacol. Exp. Ther., 2004, 311, 1115–1120.

    Article  CAS  PubMed  Google Scholar 

  15. K. Hattori, A. Kenmoku, T. Mizuguchi, D. Ikeda, M. Mizuno and T. Inazu, Saccharide-branched cyclodextrins as targeting drug carriers, J. Inclusion Phenom. Macrocyclic Chem., 2006, 56, 9–16

    Article  CAS  Google Scholar 

  16. Y. Oda, N. Kobayashi, T. Yamanoi, K. Katsuraya, K. Takahashi and K. Hattori, Beta-cyclodextrin conjugates with glucose moieties designed as drug carriers: Their syntheses, evaluations using concanavalin A and doxorubicin, and structural analyses by NMR spectroscopy, Med. Chem., 2008, 4, 244–255

    Article  CAS  PubMed  Google Scholar 

  17. Y. Oda, H. Yanagisawa, M. Maruyama, K. Hattori and T. Yamanoi, Design, synthesis and evaluation ofd-galactose-beta-cyclodextrin conjugates as drug-carrying molecules, Bioorg. Med. Chem., 2008, 16, 8830–8840

    Article  CAS  PubMed  Google Scholar 

  18. G. J. L. Bernardes, R. Kikkeri, M. Maglinao, P. Laurino, M. Collot, S. Y. Hong, B. Lepenies and P. H. Seeberger, Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte-specific targeting, Org. Biomol. Chem., 2010, 8, 4987–4996.

    Article  CAS  PubMed  Google Scholar 

  19. W. Zhu, Y. Li, L. Liu, Y. Chen and F. Xi, Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles, Int. J. Pharm., 2012, 437, 11–19

    Article  CAS  PubMed  Google Scholar 

  20. Q.-D. Hu, H. Fan, Y. Ping, W.-Q. Liang, G.-P. Tang and J. Li, Cationic supramolecular nanoparticles for co-delivery of gene and anticancer drug, Chem. Commun., 2011, 47, 5572–5574

    Article  CAS  Google Scholar 

  21. L. Y. Qiu, R. J. Wang, C. Zheng, Y. Jin and L. Q. Jin, Beta-cyclodextrin-centered star-shaped amphiphilic polymers for doxorubicin delivery, Nanomedicine, 2010, 5, 193–208

    Article  CAS  PubMed  Google Scholar 

  22. H. Kim, S. Kim, C. Park, H. Lee, H. J. Park and C. Kim, Glutathione-Induced Intracellular Release of Guests from Mesoporous Silica Nanocontainers with Cyclodextrin Gatekeepers, Adv. Mater., 2010, 22, 4280–4283

    Article  CAS  PubMed  Google Scholar 

  23. E. S. Gil, J. S. Li, H. N. Xiao and T. L. Lowe, Quaternary Ammonium beta-Cyclodextrin Nanoparticles for Enhancing Doxorubicin Permeability across the In Vitro Blood-Brain Barrier, Biomacromolecules, 2009, 10, 505–516

    Article  CAS  PubMed  Google Scholar 

  24. Y. Hagiwara, H. Arima, F. Hirayama and K. Uekama, Prolonged retention of doxorubicin in tumor cells by encapsulation of gamma-cyclodextrin complex in pegylated liposomes, J. Inclusion Phenom. Macrocyclic Chem., 2006, 56, 65–68

    Article  CAS  Google Scholar 

  25. H. Arima, Y. Hagiwara, F. Hirayama and K. Uekama, Enhancement of antitumor effect of doxorubicin by its complexation with gamma-cyclodextrin in pegylated liposomes, J. Drug Targeting, 2006, 14, 225–232

    Article  CAS  Google Scholar 

  26. T. Liu, X. J. Li, Y. F. Qian, X. L. Hu and S. Y. Liu, Multifunctional pH-Disintegrable micellar nanoparticles of asymmetrically functionalized beta-cyclodextrin-Based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties, Biomaterials, 2012, 33, 2521–2531

    Article  CAS  PubMed  Google Scholar 

  27. N. Lin and A. Dufresne, Supramolecular Hydrogels from In Situ Host-Guest Inclusion between Chemically Modified Cellulose Nanocrystals and Cyclodextrin, Biomacromolecules, 2013, 14, 871–880.

    Article  CAS  PubMed  Google Scholar 

  28. S. Daoud-Mahammed, P. Couvreur, K. Bouchemal, M. Cheron, G. Lebas, C. Amiel and R. Gref, Cyclodextrin and Polysaccharide-Based Nanogels: Entrapment of Two Hydrophobic Molecules, Benzophenone and Tamoxifen, Biomacromolecules, 2009, 10, 547–554

    Article  CAS  PubMed  Google Scholar 

  29. S. Daoud-Mahammed, J. L. Grossiord, T. Bergua, C. Amiel, P. Couvreur and R. Gref, Self-assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs, J. Biomed. Mater. Res., Part A, 2008, 86A, 736–748

    Article  CAS  Google Scholar 

  30. S. Daoud-Mahammed, P. Couvreur, C. Amiel, M. Besnard, M. Appel and R. Gref, Original tamoxifen-loaded gels containing cyclodextrins: in situ self-assembling systems for cancer treatment, J. Drug Deliv. Sci. Technol., 2004, 14, 51–55

    Article  CAS  Google Scholar 

  31. S. Daoud-Mahammed, C. Ringard-Lefebvre, N. Razzouq, V. Rosilio, B. Gillet, P. Couvreur, C. Amiel and R. Gref, Spontaneous association of hydrophobized dextran and poly-beta-cyclodextrin into nanoassemblies. Formation and interaction with a hydrophobic drug, J. Colloid Interface Sci., 2007, 307, 83–93

    Article  CAS  PubMed  Google Scholar 

  32. S. Daoud-Mahammed, P. Couvreur and R. Gref, Novel self-assembling nanogels: stability and lyophilisation studies, Int. J. Pharm., 2007, 332, 185–191.

    Article  CAS  PubMed  Google Scholar 

  33. E. Renard, A. Deratani, G. Volet and B. Sebille, Preparation and characterization of water soluble high molecular weight beta-cyclodextrin-epichlorohydrin polymers, Eur. Polym. J., 1997, 33, 49–57

    Article  CAS  Google Scholar 

  34. R. Gref, C. Amiel, K. Molinard, S. Daoud-Mahammed, B. Sebille, B. Gillet, J. C. Beloeil, C. Ringard, V. Rosilio, J. Poupaert and P. Couvreur, New self-assembled nanogels based on host-guest interactions: Characterization and drug loading, J. Controlled Release, 2006, 111, 316–324.

    Article  CAS  Google Scholar 

  35. R. Anand, F. Manoli, I. Manet, S. Daoud-Mahammed, V. Agostoni, R. Gref and S. Monti, Beta-cyclodextrin polymer nanoparticles as carriers for doxorubicin and artemisinin: a spectroscopic and photophysical study, Photochem. Photobiol. Sci., 2012, 11, 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  36. T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai and K. Kataoka, Development of the polymer micelle carrier system for doxorubicin, J. Controlled Release, 2001, 74, 295–302.

    Article  CAS  Google Scholar 

  37. R. Anand, S. Ottani, F. Manoli, I. Manet and S. Monti, A close-up on doxorubicin binding to gamma-cyclodextrin: an elucidating spectroscopic, photophysical and conformational study, RSC Adv., 2012, 2, 2346–2357.

    Article  CAS  Google Scholar 

  38. O. Bekers, J. H. Beijnen, M. Otagiri, A. Bult and W. J. M. Underberg, Inclusion complexation of Doxorubicin and Daunorubicin with Cyclodextrins, J. Pharm. Biomed. Anal., 1990, 8, 671–674

    Article  CAS  PubMed  Google Scholar 

  39. O. Bekers, J. H. Beijnen, B. J. Vis, A. Suenaga, M. Otagiri, A. Bult and W. J. M. Underberg, Effect of Cyclodextrin Complexation on the Chemical-Stability of Doxorubicin and Daunorubicin in Aqueous-Solutions, Int. J. Pharm., 1991, 72, 123–130

    Article  CAS  Google Scholar 

  40. O. Bekers, J. J. Kettenesvandenbosch, S. P. Vanhelden, D. Seijkens, J. H. Beijnen, A. Bult and W. J. M. Underberg, Inclusion Complex-Formation of Anthracycline Antibiotics with Cyclodextrins - a Proton Nuclear-Magnetic-Resonance and Molecular Modeling Study, J. Inclusion Phenom. Mol. Recognit. Chem., 1991, 11, 185–193.

    Article  CAS  Google Scholar 

  41. N. Husain, T. T. Ndou, A. M. Delapena and I. M. Warner, Complexation of Doxorubicin with Beta-Cyclodextrins and Gamma-Cyclodextrins, Appl. Spectrosc., 1992, 46, 652–658.

    Article  CAS  Google Scholar 

  42. B. Martel, M. Weltrowski, D. Ruffin and M. Morcellet, Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: Study of the process parameters, J. Appl. Polym. Sci., 2002, 83, 1449–1456.

    Article  CAS  Google Scholar 

  43. T. H. H. Thi, F. Chai, S. Lepretre, N. Blanchemain, B. Martel, F. Siepmann, H. F. Hildebrand, J. Siepmann and M. P. Flament, Bone implants modified with cyclodextrin: Study of drug release in bulk fluid and into agarose gel, Int. J. Pharm., 2010, 400, 74–85

    Article  CAS  Google Scholar 

  44. N. Blanchemain, Y. Karrout, N. Tabary, C. Neut, M. Bria, J. Siepmann, H. F. Hildebrand and B. Martel, Methyl-beta-cyclodextrin modified vascular prosthesis: Influence of the modification level on the drug delivery properties in different media, Acta Biomater., 2011, 7, 304–314.

    Article  CAS  PubMed  Google Scholar 

  45. S. Joudieh, P. Bon, B. Martel, M. Skiba, M. Lahiani-Skiba, Cyclodextrin Polymers as Efficient Solubilizers of Albendazole: Complexation and Physico-Chemical Characterization, J. Nanosci. Nanotechnol., 2009, 9, 132–140

    Article  CAS  PubMed  Google Scholar 

  46. Y. Bakkour, G. Vermeersch, M. Morcellet, F. Boschin, B. Martel and N. Azaroual, Formation of cyclodextrin inclusion complexes with doxycyclin-hyclate: NMR investigation of their characterisation and stability, J. Inclusion Phenom. Macrocyclic Chem., 2006, 54, 109–114.

    Article  CAS  Google Scholar 

  47. C. Danel, N. Azaroual, C. Chavaria, P. Odou, B. Martel and C. Vaccher, Comparative study of the complex forming ability and enantioselectivity of cyclodextrin polymers by CE and H-1 NMR, Carbohydr. Polym., 2013, 92, 2282–2292.

    Article  CAS  PubMed  Google Scholar 

  48. J. R. E. Fraser, T. C. Laurent, H. Pertoft and E. Baxter, Plasma-Clearance, Tissue Distribution and Metabolism of Hyaluronic-Acid Injected Intravenously in the Rabbit, Biochem. J., 1981, 200, 415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. I. ul-Haq, B. F. L. Lai, R. Chapanian and J. N. Kizhakkedathu, Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution, Biomaterials, 2013, 33, 9135–9147

    Article  CAS  Google Scholar 

  50. T. Etrych, V. Subr, J. Strohalm, M. Sirova, B. Rihova and K. Ulbrich, HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity, J. Controlled Release, 2012, 164, 346–354

    Article  CAS  Google Scholar 

  51. M. E. Fox, F. C. Szoka and J. M. J. Frèchet, Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture, Acc. Chem. Res., 2009, 42, 1141–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. B. Martel, D. Ruffin, M. Weltrowski, Y. Lekchiri and M. Morcellet, Water-soluble polvmers and gels from the polycondensation between cyclodextrins and poly(carboxylic acid)s: A study of the preparation parameters, J. Appl. Polym. Sci., 2005, 97, 433–442.

    Article  CAS  Google Scholar 

  53. M. M. L. Fiallo, H. Tayeb, A. Suarato, A. Garnier-Suillerot, Circular dichroism studies on anthracycline antitumor compounds. Relationship between the molecular structure and the spectroscopic data, J. Pharm. Sci., 1998, 87, 967–975.

    Article  CAS  PubMed  Google Scholar 

  54. B. Samori, A. Rossi, I. D. Pellerano, G. Marconi, L. Valentini, B. Gioia and A. Vigevani, Interactions between Drugs and Nucleic-Acids 0.1. Dichroic Studies of Doxorubicin, Daunorubicin, and Their Basic Chromophore, Quinizarin, J. Chem. Soc., Perkin Trans. 2, 1987, 1419–1426.

    Google Scholar 

  55. P. Agrawal, S. K. Barthwal and R. Barthwal, Studies on self-aggregation of anthracycline drugs by restrained molecular dynamics approach using nuclear magnetic resonance spectroscopy supported by absorption, fluorescence, diffusion ordered spectroscopy and mass spectrometry, Eur. J. Med. Chem., 2009, 44, 1437–1451.

    Article  CAS  PubMed  Google Scholar 

  56. P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet and S. Monti, Unravelling molecular mechanisms in the fluorescence spectra of Doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy, Phys. Chem. Chem. Phys., 2013, 15, 2937–2944.

    Article  CAS  PubMed  Google Scholar 

  57. L. Angeloni, G. Smulevich and M. P. Marzocchi, Absorption, Fluorescence and Resonance Raman-Spectra of Adriamycin and Its Complex with DNA, Spectrochim. Acta, Part A, 1982, 38, 213–217.

    Article  Google Scholar 

  58. K. K. Karukstis, E. H. Z. Thompson, J. A. Whiles and R. J. Rosenfeld, Deciphering the fluorescence signature of daunomycin and doxorubicin, Biophys. Chem., 1998, 73, 249–263.

    Article  CAS  PubMed  Google Scholar 

  59. A. H. J. Wang, G. Ughetto, G. J. Quigley and A. Rich, Interactions between an Anthracycline Antibiotic and DNA - Molecular-Structure of Daunomycin Complexed to D(Cpgptpapcpg) at 1.2-a Resolution, Biochemistry, 1987, 26, 1152–1163.

    Article  CAS  PubMed  Google Scholar 

  60. V. Rizzo, C. Battistini, A. Vigevani, N. Sacchi, G. Razzano, F. Arcamone, A. Garbesi, F. Colonna, M. L. Capobianco and L. Tondelli, Association of anthracyclines and synthetic hexanucleotides. Structural factors influencing sequence specificity, J. Mol. Recognit., 1989, 2, 132–141.

    Article  CAS  PubMed  Google Scholar 

  61. X. G. Qu, C. Z. Wan, H. C. Becker, D. P. Zhong and A. H. Zewail, The anticancer drug-DNA complex: Femtosecond primary dynamics for anthracycline antibiotics function, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 14212–14217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Monti.

Additional information

Electronic supplementary information (ESI) available.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, R., Malanga, M., Manet, I. et al. Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem Photobiol Sci 12, 1841–1854 (2013). https://doi.org/10.1039/c3pp50169h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50169h

Navigation