Issue 18, 2012

Impact of point defects on electronic structure in Y2Ti2O7

Abstract

With many technologies and applications downscaling to nanometer dimensions, the influence of single point defects on electronic structure has shown an increasingly profound impact on optical and electrical properties, and advancing fundamental understanding is critical to defect engineering and control of materials properties. In the present study, first-principles calculations based on density functional theory (DFT) are carried out to study the effects of Ti point defects on the electronic structure of Y2Ti2O7. In the literature, it has been demonstrated that conventional DFT tends to produce delocalized holes and electrons in defective oxide materials due to insufficient cancellation of the self-interaction energy and underestimation of the band gap, which results in an incorrect description of the electronic structure of the system. In an effort to better understand the accuracy of DFT in describing the behavior of Y2Ti2O7 with point defects, the calculated results obtained from DFT and DFT+U methods are compared, including the geometrical distortion, the localization of the defect states and the position of the defect levels in the band gap. Using DFT, distorted geometries around the Ti vacancy and interstitial are found, along with localized oxygen holes and Ti electrons, both of which compare well with the DFT+U results, suggesting that the conventional DFT can be used to describe the localization of the Ti defects in Y2Ti2O7. One major difference in the DFT and DFT+U calculations is the energy position of the defect levels, for which DFT+U results in the states positioned deep in the band gap. Since the DFT+U method suffers from the dependence of the results on the empirical parameter U and no experimental results on the energy position of the defect states are available to tune this U value, care must be taken in applying DFT+U to electronic structure calculations of Y2Ti2O7 with point defects. Based on the DFT method, the most preferred charge state is determined by the formation energies for charged point defects. Moving the Fermi level across the band gap has slight effects on the charge state, and the Ti vacancy and interstitial are found to be in −4 and +4 charge states, respectively.

Graphical abstract: Impact of point defects on electronic structure in Y2Ti2O7

Article information

Article type
Paper
Submitted
31 May 2012
Accepted
31 May 2012
First published
13 Jun 2012

RSC Adv., 2012,2, 7235-7240

Impact of point defects on electronic structure in Y2Ti2O7

H. Xiao, Y. Zhang and W. J. Weber, RSC Adv., 2012, 2, 7235 DOI: 10.1039/C2RA21099A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements