Issue 22, 2012

Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations

Abstract

Organisms have evolved a wide variety of mechanisms to utilize and respond to light. In many cases, the biological response is mediated by structural changes that follow photon absorption in a protein complex. The initial step in such cases is normally the photoisomerization of a highly conjugated prosthetic group. To understand better the factors controlling the isomerization, we perform atomistic molecular dynamics simulations. In this perspective article we briefly review the key theoretical concepts of photochemical reactions and present a practical simulation scheme for simulating photochemical reactions in biomolecular systems. In our scheme, a multi-configurational quantum mechanical description is used to model the electronic rearrangement for those parts of the system that are involved in the photon absorption. For the remainder, typically consisting of the apo-protein and the solvent, a simple force field model is used. The interactions in the systems are thus computed within a hybrid quantum/classical framework. Forces are calculated on-the-fly, and a diabatic surface hopping procedure is used to model the excited-state decay. To demonstrate how this method is used we review our studies on photoactivation of the photoactive yellow protein, a bacterial photoreceptor. We will show what information can be obtained from the simulations, and, by comparing to recent experimental findings, what the limitations of our simulations are.

Graphical abstract: Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations

Article information

Article type
Perspective
Submitted
18 Nov 2011
Accepted
27 Mar 2012
First published
27 Mar 2012

Phys. Chem. Chem. Phys., 2012,14, 7912-7928

Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations

M. Boggio-Pasqua, C. F. Burmeister, M. A. Robb and G. Groenhof, Phys. Chem. Chem. Phys., 2012, 14, 7912 DOI: 10.1039/C2CP23628A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements