Issue 6, 2001

Molecularly imprinted polymer sensors for pesticide and insecticide detection in water

Abstract

Antibodies, peptides, and enzymes are often used as molecular recognition elements in chemical and biological sensors. However, their lack of stability and signal transduction mechanisms limits their use as sensing devices. Recent advances in the field of molecularly imprinted polymers (MIPs) have created synthetic materials that can mimic the function of biological receptors but with less stability constraints. These polymers can provide high sensitivity and selectivity while maintaining excellent thermal and mechanical stability. To further enhance the advantages of the traditional imprinted polymer approach, an additional fluorescent component has been introduced into these polymers. Such a component provides enhanced chemical affinity as well as a method for signal transduction. In this type of imprinted polymer, binding of the target analyte invokes a specific spectral signature from the reporter molecule. Previous work has provided molecularly imprinted polymers that are selective for the hydrolysis products of organophosphorus species such as the nerve agents sarin and soman. (A. L. Jenkins, O. M. Uy and G. M. Murray, Anal. Chem., 1999, 71, 373). In this paper the direct imprinting of non-hydrolyzed organophosphates including pesticides and insecticides is described. Detection limits for these newly developed MIP sensors are less than 10 parts per trillion (ppt) with long linear dynamic ranges (ppt to ppm) and response times of less than 15 min.

Article information

Article type
Paper
Submitted
03 Nov 2000
Accepted
14 Dec 2000
First published
31 Jan 2001

Analyst, 2001,126, 798-802

Molecularly imprinted polymer sensors for pesticide and insecticide detection in water

A. L. Jenkins, R. Yin and J. L. Jensen, Analyst, 2001, 126, 798 DOI: 10.1039/B008853F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements