Skip to main content
Log in

Photocatalysis and self-catalyzed photobleaching with covalently-linked chromophore-quencher conjugates built around BOPHY

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Two Chromophore-Quencher Conjugates (CQCs) have been synthesized by covalent attachment of the anti-oxidant dibutylated-hydroxytoluene (BHT) to a pyrrole-BF2 chromophore (BOPHY) in an effort to protect the latter against photofading. In fluid solution, light-induced intramolecular charge transfer is favoured in polar solvents and helps to inhibit photo-bleaching of the chromophore. The rate of photo-fading, which scales with the number of BHT residues, is zero-order in polar solvents but shows a linear dependence on the number of absorbed photons. The zero-order rate constant shows an inverse correlation with the fluorescence quantum yield measured in the same solvent. Photo-bleaching in benzonitrile involves autocatalysis while reaction in cyclohexane shows an unexpected stoichiometry. NMR spectroscopy indicates initial damage takes place at the BHT unit and allows identification of a reactive hydroperoxide as being the primary product. In the presence of an adventitious substrate, this hydroperoxide is a photocatalyst for amide formation under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. De Rosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233, 351–371.

    Google Scholar 

  2. A. A. Gorman and M. A. J. Rodgers, Singlet molecular-oxygen, Chem. Soc. Rev., 1981, 10, 205–231.

    Article  CAS  Google Scholar 

  3. P. R. Ogilby and C. S. Foote, Chemistry of singlet oxygen. 42. Effect of solvent, solvent isotopic-substitution, and temperature on the lifetime of singlet molecular-oxygen (1-delta-g), J. Am. Chem. Soc., 1983, 105, 3423–3430.

    Article  CAS  Google Scholar 

  4. M. A. H. Alamiry, A. Harriman, A. Haefele and R. Ziessel, Photochemical bleaching of an elaborate artificial light-harvesting antenna, ChemPhysChem, 2015, 16, 1867–1872.

    Article  CAS  PubMed  Google Scholar 

  5. A. Telfer, Too much light? How beta-carotene protects the photosystem II reaction centre, Photochem. Photobiol. Sci., 2005, 4, 950–956.

    Article  CAS  PubMed  Google Scholar 

  6. R. Edge, D. J. McGarvey and T. G. Truscott, The carotenoids as anti-oxidants - a review, J. Photochem. Photobiol., B, 1997, 41, 189–200.

    Article  CAS  Google Scholar 

  7. H. Zöllinger, Color Chemistry. Syntheses, Properties and Applications of Organic Dyes and Pigments, VHCA Publishers, Zurich, 3rd edn, Revised, 2003.

    Google Scholar 

  8. N. K. Bridge and G. Porter, Primary photoprocesses in quinones and dyes. Part 1. Spectroscopic detection of intermediates, Proc. R. Soc. London, Ser. A, 1958, 244, 259–275.

    Article  CAS  Google Scholar 

  9. D. K. Palit, H. Pal, T. Mukherjee and J. P. Mittal, Triplet excited-states and semiquinone radicals of 1,4-disubstituted anthraquinones, J. Photochem. Photobiol., A, 1990, 52, 375–390.

    Article  CAS  Google Scholar 

  10. B. Armitage, C. J. Yu, C. Devadoss and G. B. Schuster, Cationic anthraquinone derivatives as catalytic DNA photo-nucleases - mechanisms for DNA-damage and quinone recycling, J. Am. Chem. Soc., 1994, 116, 9847–9859.

    Article  CAS  Google Scholar 

  11. J. L. Alejo, S. C. Blanchard and O. S. Andersen, Small-molecule photostabilizing agents are modifiers of lipid bilayer properties, Biophys. J., 2013, 104, 2410–2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. van der Linde, S. Wolter, M. Heilemann and M. Sauer, The effect of photoswitching kinetics and labelling densities on super-resolution fluorescence imaging, J. Biotechnol., 2010, 149, 260–266.

    Article  PubMed  CAS  Google Scholar 

  13. M. Levitus and S. Ranjit, Cyanine dyes in biophysical research: The photophysics of polymethine fluorescent dyes in biomolecular environments, Q. Rev. Biophys., 2011, 44, 123–151.

    Article  CAS  PubMed  Google Scholar 

  14. V. Glembockyte and G. Cosa, Redox-based photostabilizing agents in fluorescence imaging: The hidden role of intersystem crossing in geminate radical ion pairs, J. Am. Chem. Soc., 2017, 139, 13227–13233.

    Article  CAS  PubMed  Google Scholar 

  15. C. F. Calver, B. A. Lago, K. S. Schanze and G. Cosa, Enhancing the photostability of poly(phenylene ethynylene) for single particle studies, Photochem. Photobiol. Sci., 2017, 16, 1821–1831.

    Article  CAS  PubMed  Google Scholar 

  16. P. Holzmeister, A. Gietl and P. Tinnefeld, Geminate recombination as a photoprotection mechanism for fluorescent dyes, Angew. Chem., Int. Ed., 2014, 53, 5685–5688.

    Article  CAS  Google Scholar 

  17. J. Vogelsang, C. Steinhauser, C. Forthmann, I. H. Stein, B. Person-Skegro, T. Cordes and P. Tinnefeld, Make them blink: Probes for super-resolution microscopy, ChemPhysChem, 2010, 11, 2475–2490.

    Article  CAS  PubMed  Google Scholar 

  18. R. B. Altman, Q. Zheng, Z. Zhou, D. S. Terry, J. D. Warren and S. C. Blanchard, Enhanced photostability of cyanine fluorophores across the visible spectrum, Nat. Methods, 2012, 9, 68.

    Article  CAS  Google Scholar 

  19. Q. Zheng, S. Jockusch, Z. Zhou and S. C. Blanchard, The contribution of reactive oxygen species to the photobleaching of organic fluorophores, Photochem. Photobiol., 2014, 90, 448–454.

    Article  CAS  PubMed  Google Scholar 

  20. Q. Zheng, M. F. Juette, S. Jockusch, M. R. Wasserman, Z. Zhou, R. B. Altman and S. C. Blanchard, Ultra-stable organic fluorophores for single-molecule research, Chem. Soc. Rev., 2014, 43, 1044–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. H. M. van der Velde, J. Oelerich, J. Y. Huang, J. H. Smit, M. Hiermaier, E. Ploetz, A. Herrmann, G. Roelfes and T. Cordes, The power of two: Covalent coupling of photo-stabilizers for fluorescence applications, J. Phys. Chem. Lett., 2014, 5, 3792–3798.

    Article  PubMed  CAS  Google Scholar 

  22. J. H. M. Van der Velde, J. Oelerich, J. Y. Huang, J. Smits, A. A. Jazi, K. Galiani, K. Kolmakov, S. Guoridis, C. Eggeling, A. Hermann, G. Roelfes and T. Cordes, A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization, Nat. Commun., 2016, 7, 10144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Q. Zheng, S. Jockusch, G. G. Rodriguez-Calero, Z. Zhou, H. Zhao, R. B. Altman, H. D. Abruñab and S. C. Blanchard, Intramolecular triplet energy transfer is a general approach to improve organic fluorophore photostability, Photochem. Photobiol. Sci., 2016, 15, 196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. P. Tinnefeld and T. Cordes, ‘Self-healing’ dyes: Intramolecular stabilization of organic fluorophores, Nat. Methods, 2012, 9, 426–427.

    Article  CAS  PubMed  Google Scholar 

  25. Q. Zheng, S. Jockusch, Z. Zhou, R. B. Altman, J. D. Warren, N. J. Turro and S. C. Blanchard, On the mechanisms of cyanine fluorophore photostabilization, J. Phys. Chem. Lett., 2012, 3, 2200–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O. Woodford, A. Harriman, W. McFarlane and C. Wills, Dramatic effect of solvent on the rate of photobleaching of organic pyrrole-BF2 (BOPHY) dyes, ChemPhotoChem, 2017, 1, 317–325.

    Article  CAS  Google Scholar 

  27. I. S. Tamgho, A. Hasheminasab, J. T. Engle, V. N. Nemykin and C. J. Ziegler, A new highly fluorescent and symmetric pyrrole-BF2 chromophore: BOPHY, J. Am. Chem. Soc., 2014, 136, 5623–5626.

    Article  CAS  PubMed  Google Scholar 

  28. O. Brede, H. Orthner, V. Zubarev and R. Hermann, Radical cations of sterically hindered phenols as intermediates in radiation-induced electron transfer processes, J. Phys. Chem., 1996, 100, 7097–7105.

    Article  CAS  Google Scholar 

  29. M. Foti, K. U. Ingold and J. Lusztyk, The surprisingly high reactivity of phenoxyl radicals, J. Am. Chem. Soc., 1994, 116, 9440–9447.

    Article  CAS  Google Scholar 

  30. E. R. Welin, C. Le, D. M. Arias-Rotondo, J. K. McCusker and D. W. C. MacMillan, Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II), Science, 2017, 355, 380–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Parasram and V. Gevorgyan, Visible light-induced transition metal-catalyzed transformations: Beyond conventional photosensitizers, Chem. Soc. Rev., 2017, 46, 6227–6240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. X.-F. Wang, S.-S. Yu, C. Wang, D. Xue and J. B. Xiao, BODIPY catalyzed amide synthesis promoted by BHT and air under visible light, Org. Biomol. Chem., 2016, 14, 7028–7037.

    Article  CAS  PubMed  Google Scholar 

  33. A. Mirloup, Q. Huaulmé, N. Leclerc, P. Lévêque, T. Heiser, P. Retailleau and R. Ziessel, Thienyl-BOPHY dyes as promising templates for bulk heterojunction solar cells, Chem. Commun., 2015, 51, 14742–14745.

    Article  CAS  Google Scholar 

  34. R. Ziessel, T. Bura and J.-H. Olivier, Elaborating boron dipyrromethene dyes with conjugated polyaromatic frameworks, Synlett, 2010, 2304–2310.

    Google Scholar 

  35. D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting, Academic Press, London, 1984.

    Google Scholar 

  36. H. E. Grecco, P. Roda-Navarro and P. J. Verveer, Global analysis of time correlated single photon counting FRET-FLIM data, Opt. Express, 2009, 17, 6493–6508.

    Article  CAS  PubMed  Google Scholar 

  37. W. Schroeyers, R. Vahee, D. Patra, J. Hofkens, S. Habuchi, T. Vosch, M. Cotlet, K. Mullen, J. Enderlein and F. C. De Schryver, Fluorescence lifetimes and emission patterns probe the 3D orientation of the emitting chromophore in a multichromophoric system, J. Am. Chem. Soc., 2004, 126, 14310–14311.

    Article  CAS  PubMed  Google Scholar 

  38. A. Harriman, K. J. Elliott, M. A. H. Alamiry, L. Le Pieux, M. Severac, Y. Pellegrin, E. Blart, C. Fosse, C. Cannizzo, C. R. Mayer and F. Odobei, Intramolecular electron transfer reactions observed for Dawson-type polyoxometaiates covalently linked to porphyrin residues, J. Phys. Chem. C, 2009, 113, 5834–5842.

    Article  CAS  Google Scholar 

  39. F. D. Lewis, J. M. Wagner-Brennan and J. M. Denari, Intramolcular electron transfer in donor-spacer-acceptor systems with alkylamide spacers, J. Phys. Chem. A, 1998, 102, 519–525.

    Article  CAS  Google Scholar 

  40. A. F. Morales, G. Accorsi, N. Armaroli, F. Barigelletti, S. J. A. Pope and M. D. Ward, Interplay of light antenna and excitation “energy reservoir” effects in a bichromophoric system based on ruthenium-polypyridine and pyrene units linked by a long and flexible poly(ethylene glycol) chain, Inorg. Chem., 2002, 41, 6711–6719.

    Article  CAS  PubMed  Google Scholar 

  41. S. Mula, K. J. Elliott, A. Harriman and R. Ziessel, Energy transfer by way of an exciplex intermediate in flexible boron dipyrromethene-based allosteric architectures, J. Phys. Chem. A, 2010, 114, 10515–10522.

    Article  CAS  PubMed  Google Scholar 

  42. A. Onkelinx, F. C. De Schryver, L. Viaene, M. Van der Auweraer, K. Iwai, M. Yamamoto, M. Ichikawa, H. Masuhara, M. Maus and W. Rettig, Radiative depopulation of the excited intramolecular charge-transfer state of 9-(4-(N,N-dimethylamino)phenyl)phenanthrene, J. Am. Chem. Soc., 1996, 118, 2892–2902.

    Article  CAS  Google Scholar 

  43. Y. V. Il’ichev, W. Kuhnie and K. A. Zachariasse, Intramolecular charge transfer in dual fluorescent 4-(dialkyiamino)benzonitriles. Reaction efficiency enhancement by increasing the size of the amino and benzonitrile subunits by alkyl substituents, J. Phys. Chem. A, 1998, 102, 5670–5680.

    Article  Google Scholar 

  44. Q. Huaulmé, A. Mirloup, P. Retailleau and R. Ziessel, Synthesis of highly functionalized BOPHY chromophores displaying large Stokes shifts, Org. Lett., 2015, 17, 2246–2249.

    Article  PubMed  CAS  Google Scholar 

  45. Y. V. Zatsikha, D. B. Nemez, R. L. Davis, S. Singh, D. E. Herbert, A. J. King, C. J. Ziegler and V. N. Nemykin, Testing the limits of the BOPHY platform: Preparation, characterization, and theoretical modeling of BOPHYs and organometallic BOPHYs with electron-withdrawing groups at beta-pyrrolic and bridging positions, Chem. - Eur. J., 2017, 23, 14786–14796.

    Article  CAS  PubMed  Google Scholar 

  46. A. Harriman, Further comments on the redox potentials of tryptophan and tyrosine, J. Phys. Chem., 1987, 91, 6102–6104.

    Article  CAS  Google Scholar 

  47. J. Bonin, C. Costentin, C. Louault, M. Robert, M. Routier and J. M. Saveant, Intrinsic reactivity and driving force dependence in concerted proton-electron transfers to water illustrated by phenol oxidation, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 3367–3372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven and N. S. Hush, Long-range photoinduced through-bond electron-transfer and radiative recombination via rigid nonconjugated bridges - distance and solvent dependence, J. Am. Chem. Soc., 1987, 109, 3258–3269.

    Article  CAS  Google Scholar 

  49. A. Harriman, G. Porter and N. Searle, Reversible photooxidation of zinc tetraphenylporphyrin by benzo-1,4-quinone, J. Chem. Soc., Faraday Trans. 2, 1979, 75, 1515–1521.

    Article  CAS  Google Scholar 

  50. P. Kuzmic, Program DYNAFIT for the analysis of enzyme kinetic data: Application to HIV proteinas, Anal. Biochem., 1996, 237, 260–273.

    Article  CAS  PubMed  Google Scholar 

  51. J. K. G. Karisson, O. J. Woodford, R. Al-Aqar and A. Harriman, Effects of temperature and concentration on the rate of photobleaching of Erythrosine in water, J. Phys. Chem. A, 2017, 121, 8569–8576.

    Article  CAS  Google Scholar 

  52. F. Mata-Perez and J. F. Perez-Benito, The kinetic rate law for autocatalytic reactions, J. Chem. Educ., 1987, 64, 925–927.

    Article  CAS  Google Scholar 

  53. J. F. Perez-Benito, C. Arais and E. Amat, A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid, J. Colloid Interface Sci., 1996, 177, 288–297.

    Article  CAS  Google Scholar 

  54. A. K. Horvath, I. Nagypai and I. R. Epstein, Three autocatalysts and self-inhibition in a single reaction: A detailed mechanism of the chlorite-tetrathionate reaction, Inorg. Chem., 2006, 45, 9877–9883.

    Article  CAS  PubMed  Google Scholar 

  55. D. M. Guidi, Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models, Chem. Soc. Rev., 2002, 31, 22–36.

    Article  CAS  Google Scholar 

  56. C. Costentin, M. Robert and J.-M. Saveant, Concerted proton-electron transfers in the oxidation of phenols, Phys. Chem. Chem. Phys., 2010, 12, 11179–11190.

    Article  CAS  PubMed  Google Scholar 

  57. W. H. Koppenol, D. M. Stanbury and P. L. Bounds, Electrode potentials of partially reduced oxygen species, from dioxygen to water, Free Radicals Biol. Med., 2010, 49, 317–322.

    Article  CAS  Google Scholar 

  58. N. A. Stephenson and A. T. Bell, Quantitative analysis of hydrogen peroxide by H-1 NMR spectroscopy, Anal. Bioanal. Chem., 2005, 381, 1289–1293.

    Article  CAS  PubMed  Google Scholar 

  59. Landolt-Börnstein - Group IV Physical Chemistry, in Viscosity of Pure Organic Liquids and Binary Liquid Mixtures. Supplement to IV/18, ed. M. D. Lechner, 2009, vol. 25.

  60. I. Yamazaki and L. H. Piette, EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen-peroxide, J. Am. Chem. Soc., 1991, 113, 7588–7593.

    Article  CAS  Google Scholar 

  61. E. Baciocchi, T. Del Giacco, F. Elisei, M. F. Gerini, M. Guerra, A. Lapi and P. Liberali, Electron transfer and singlet oxygen mechanisms in the photooxygenation of dibutyl sulfide and thioanisole in MeCN sensitized by N-methylquinolinium tetrafluoborate and 9,10-dicyanoan-thracene. The probable involvement of a thiadioxirane intermediate in electron transfer photooxygenations, J. Am. Chem. Soc., 2003, 125, 16444–16454.

    Article  CAS  PubMed  Google Scholar 

  62. B. M. Aveline, S. Matsugo and R. W. Redmond, Photochemical mechanisms responsible for the versatile application of naphthalimides and naphthaldiimides in biological systems, J. Am. Chem. Soc., 1997, 119,11785–11795.

    Article  CAS  Google Scholar 

  63. D. M. Guldi, G. Torres-Garcia and J. Mattay, Intramolecular energy transfer in fullerene pyrazine dyads, J. Phys. Chem. A, 1998, 102, 9679–9685.

    Article  CAS  Google Scholar 

  64. J. R. Darwent, P. Douglas, A. Harriman, G. Porter and M.-C. Richoux, Metal phthalocyanines and porphyrins as photosensitisers for the reduction of water to hydrogen, Coord. Chem. Rev., 1982, 44, 83–126.

    Article  CAS  Google Scholar 

  65. M. R. Wasielewski, Photoinduced electron-transfer reactions for artificial photosynthesis, Chem. Rev., 1992, 92, 435–461.

    Article  CAS  Google Scholar 

  66. M. Hippler, Photochemical kinetics: Reaction orders and analogies with molecular beam scattering and cavity ring-down experiments, J. Chem. Educ., 2003, 80, 1074–1077.

    Article  CAS  Google Scholar 

  67. D. Lavabre, V. Pimienta, G. Levy and J. C. Micheau, Reversible, mixed 1st and 2nd order and autocatalytic reactions as particular cases of a single kinetic rate law, J. Phys. Chem., 1993, 97, 5321–5326.

    Article  CAS  Google Scholar 

  68. L. N. Ismail, H. Zulkefle, S. H. Herman and M. R. Mahmood, Influence of doping concentration on dielectric, optical, and morphological properties of PMMA thin films, Adv. Mater. Sci. Eng., 2012, 2012, 605673.

    Google Scholar 

  69. W. Liu, Y. Li, K. Liu and Z. Li, Iron-catalyzed carbonylation-peroxidation of alkenes with aldehydes and hydroperoxides, J. Am. Chem. Soc., 2011, 133, 10756–10759.

    Article  CAS  PubMed  Google Scholar 

  70. W.-J. Yoo and C.-J. Li, Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts, J. Am. Chem. Soc., 2006, 128, 13064–13065.

    Article  CAS  PubMed  Google Scholar 

  71. J. W. W. Chang, T. M. U. Ton, S. Tania, P. C. Taylor and P. W. H. Chan, Practical copper(I)-catalysed amidation of aldehydes, Chem. Commun., 2010, 46, 922–924.

    Article  CAS  Google Scholar 

  72. R. E. Rodríguez-Lugo, M. Trincado and H. Grützmacher, Direct amidation of aldehydes with primary amines under mild conditions catalyzed by diolefin-amine-Rh-I complexes, ChemCatChem, 2013, 5, 1079–1083.

    Article  CAS  Google Scholar 

  73. Z. Yun-Fei, B. Wu and Z.-J. Shi, Ir-catalyzed C-H amidation of aldehydes with stoichiometric/catalytic directing group, Chem. - Eur.J., 2016, 22, 17808–17812.

    Article  CAS  Google Scholar 

  74. S. Debbarma and M. Sudan Maji, Cp*Rh-III-catalyzed directed amidation of aldehydes with anthranils, Eur. J. Org. Chem., 2017, 3699–3706.

    Google Scholar 

  75. N. Mataga, T. Asahi, Y. Kanda, T. Okada and T. Kakitani, Mechanisms of the strongly exothermic charge separation reaction in the excited singlet-state - picosecond laser photolysis studies on the aromatic hydrocarbon tetracyano-ethylene and aromatic hydrocarbon pyromellitic dianhydride systems in polar solutions, Chem. Phys., 1988, 127, 249–261.

    Article  CAS  Google Scholar 

  76. J. Mattay and M. Von den Hof, Contact and solvent-separated radical ion-pairs in organic photochemistry, Top. Curr. Chem., 1991, 159, 219–255.

    Article  CAS  Google Scholar 

  77. A. C. Benniston, A. Harriman, P. Li, J. P. Rostron, H. J. van Ramesdonk, M. M. Groeneveld, H. Zhang and J. W. Verhoeven, Charge shift and triplet state formation in the 9-mesityl-10-methylacridinium cation, J. Am. Chem. Soc., 2005, 127, 16054–16064.

    Article  CAS  PubMed  Google Scholar 

  78. W. A. Braunecker and K. Matyjaszewski, Controlled/living radical polymerization: Features, developments, and perspectives, Prog. Polym. Sci., 2007, 32, 93–146.

    Article  CAS  Google Scholar 

  79. T. G. St Denis, T. Dai, L. Izikson, C. Astrakas, R. R. Anderson, M. R. Hamblin and G. P. Tegos, All you need is light. Antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease, Virulence, 2011, 2, 509–520.

    Article  PubMed  PubMed Central  Google Scholar 

  80. S. R. Lewis, S. Datta, M. H. Gui, E. L. Coker, F. E. Huggins, S. Daunert, L. Bachas and D. Bhattacharyya, Reactive nano-structured membranes for water purification, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 8577–8582.

    Article  PubMed  PubMed Central  Google Scholar 

  81. S. Funyu, T. Isobe, S. Takagi, D. A. Tryk and H. Inoue, Highly efficient and selective epoxidation of alkenes by photochemical oxygenation sensitized by a ruthenium(II) porphyrin with water as both electron and oxygen donor, J. Am. Chem. Soc., 2003, 125, 5734–5740.

    Article  CAS  PubMed  Google Scholar 

  82. D. Tatsumi, T. Tsukamoto, R. Honna, S. Hoshino, T. Shimada and S. Takagi, Highly selective photochemical epoxidation of cyclohexene sensitized by Ru(II) porphyrinclay hybrid catalyst, Chem. Lett., 2017, 46, 1311–1314.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank EPSRC for the award of an Industrial CASE award (OJW) and Newcastle University for financial support of this work. We also thank the EPSRC Mass Spectrometry service at Swansea for access to facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Harriman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirbu, D., Woodford, O.J., Benniston, A.C. et al. Photocatalysis and self-catalyzed photobleaching with covalently-linked chromophore-quencher conjugates built around BOPHY. Photochem Photobiol Sci 17, 750–762 (2018). https://doi.org/10.1039/c8pp00162f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00162f

Navigation