Skip to main content

Advertisement

Log in

Productivity of aquatic primary producers under global climate change

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The productivity of aquatic primary producers depends on a number of biotic and abiotic factors, such as pH, CO2 concentration, temperature, nutrient availability, solar UV and PAR irradiances, mixing frequency as well as herbivore pressure and the presence of viruses, among others. The effects of these factors, within a climate change context, may be additive, synergistic or antagonistic. Since some of them, e.g. solar radiation and temperature, vary along a latitudinal gradient, this perspective about the effects of global climate change on primary producers will consider ecosystems individually, separated into polar (Arctic and Antarctic), temperate and tropical waters. As coastal waters are characterized by lower light penetration and higher DOM and nutrient concentrations, they are considered in a separate section. Freshwater systems are also governed by different conditions and therefore also treated in their own section. Overall, we show that although there are general common trends of changes in variables associated with global change (e.g. the impact of UVR on photosynthesis tends to decrease with increasing temperature and nutrient input), the responses of aquatic primary producers have great variability in the different ecosystems across latitudes. This is mainly due to direct or indirect effects associated with physico-chemical changes that occur within water bodies. Therefore we stress the need for regional predictions on the responses of primary producers to climate change as it is not warranted to extrapolate from one system to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Charette, W. H. F. Smith, The Volume of Earth’s Ocean, Oceanography, 2010, 23, 112–114.

    Article  Google Scholar 

  2. D.-P. Häder, H. D. Kumar, R. C. Smith, R. C. Worrest, Effects on aquatic ecosystems, J. Photochem. Photobiol., B, 1998, 46, 53–68.

    Article  Google Scholar 

  3. H. K. Lotze, B. Worm, M. Molis, M. Wahl, Effects of UV radiation and consumers on recruitment and succession of a marine macrobenthic community, Mar. Ecol. Prog. Ser., 2002, 243, 57–66.

    Article  Google Scholar 

  4. FAO, The state of world fisheries and aquaculture 2012, FAO, Rome, 2012.

    Google Scholar 

  5. H. Cesar, L. Burke and L. Pet-Soede, The Economics of Worldwide Coral Reef Degradation, WWF and ICRAN, 2003.

    Google Scholar 

  6. A. V. Parisi, M. G. Kimlin, Personal solar UV exposure measurements employing modified polysulphone with an extended dynamic range, Photochem. Photobiol., 2004, 79, 411–415.

    Article  CAS  PubMed  Google Scholar 

  7. D.-P. Häder, H. D. Kumar, R. C. Smith, R. C. Worrest, Effects of solar UV radiation on aquatic ecosystems and interactions with climate change, Photochem. Photobiol. Sci., 2007, 6, 267–285.

    Article  PubMed  Google Scholar 

  8. M. M. Ali, A. A. Mageed, M. Heikal, Importance of aquatic macrophyte for invertebrate diversity in large subtropical reservoir, Limnologica - Ecol. Manage. Inland Waters, 2007, 37, 155–169.

    Article  Google Scholar 

  9. P. Tardent, Meeresbiologie, Eine Einführung, Thieme, Stuttgart, 2005.

    Google Scholar 

  10. S. W. Wilhelm, A. R. Matteson, Freshwater and marine virioplankton: a brief overview of commonalities and differences, Freshwater Biol., 2008, 53, 1076–1089.

    Article  Google Scholar 

  11. A. S. Lang, M. L. Rise, A. I. Culley, G. F. Steward, RNA viruses in the sea, FEMS Microbiol. Rev., 2009, 33, 295–233.

    Article  CAS  PubMed  Google Scholar 

  12. C. P. D. Brussaard, Viral control of phytoplankton populations - a review, J. Eukaryot. Microbiol., 2004, 51, 125–138.

    Article  PubMed  Google Scholar 

  13. F. Azam, Microbial control of oceanic carbon flux: The plot thickens, Science, 1998, 280, 694–696.

    Article  CAS  Google Scholar 

  14. R. Chester and T. Jickells, Marine Geochemistry, Wiley-Blackwell, Chichester, 2012; (b) IPCC, Summary for Policymakers: Climate change 2013 - The physical science basis, Working Group 1 Contribution to the IPCC Fifth Assessment Report, 2013, pp. 1-38.

    Book  Google Scholar 

  15. P. Falkowski, R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Högberg, S. Linder, F. T. Mackenzie, B. Moore III, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen, The global carbon cycle: a test of our knowledge of earth as a system, Science, 2000, 290, 291–296.

    Article  CAS  PubMed  Google Scholar 

  16. J. E. Girard, Principles of Environmental Chemistry, Jones & Bartlett Learning, Burlington, MA, 2013.

    Google Scholar 

  17. M. Hein, K. Sand-Jensen, CO2 increases oceanic primary production, Nature, 1997, 388, 526–527.

    Article  CAS  Google Scholar 

  18. P. Schippers, M. Lürling, M. Scheffer, Increase of atmospheric CO2 promotes phytoplankton productivity, Ecol. Lett., 2004, 7, 446–451.

    Article  Google Scholar 

  19. O. Hoegh-Guldberg, Dangerous shifts in ocean ecosystem function?, ISME J., 2010, 1090–1092.

    Google Scholar 

  20. R. E. Zeebe, J. C. Zachos, K. Caldeira, T. Tyrrell, Oceans - Carbon emissions and acidification, Science, 2008, 321, 51–52.

    Article  CAS  PubMed  Google Scholar 

  21. R. Terrado, K. Scarcella, M. Thaler, W. F. Vincent, C. Lovejoy, Small phytoplankton in Arctic seas: vulnerability to climate change, Biodivers. Conserv., 2013, 14, 2–18.

    Google Scholar 

  22. K. Gao, E. W. Helbling, D.-P. Häder, D. A. Hutchins, Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming, Mar. Ecol. Prog. Ser., 2012, 470, 167–189.

    Article  CAS  Google Scholar 

  23. K. R. N. Anthony, J. A. Maynard, G. Diaz-Pulido, P. J. Mumby, P. A. Marshall, L. Cao, O. Hoegh-Guldenberg, Ocean acidification and warming will lower coral reef resilience, GCB, 2011, 17, 1798–1808.

    Google Scholar 

  24. V. J. Fabry, B. A. Seibel, R. A. Feely, J. C. Orr, Impacts of ocean acidification on marine fauna and ecosystem processes, ICES J. Mar. Sci., 2008, 65, 414–432.

    Article  CAS  Google Scholar 

  25. L. Beaufort, I. Probert, T. de Garidel-Thoron, E. M. Bendif, D. Ruiz-Pino, N. Metzl, C. Goyet, N. Buchet, P. Coupel, M. Grelaud, B. Rost, R. E. M. Rickaby, C. de Vargas, Sensitivity of coccolithophores to carbonate chemistry and ocean acidification, Nature, 2011, 476, 80–83.

    Article  CAS  PubMed  Google Scholar 

  26. S. C. Doney, V. J. Fabry, R. A. Feely, J. A. Kleypas, Ocean acidification: the other CO2 problem, Annu. Rev. Mar. Sci., 2009, 1, 169–192.

    Article  Google Scholar 

  27. P. Coupel, H. Y. Jin, M. Joo, R. Horner, H. A. Bouvet, V. Garçon, M.-A. Sicre, J.-C. Gascard, J. F. Chen, D. Ruiz-Pino, Phytoplankton distribution in unusually low sea ice cover over the Pacific Arctic, Biogeosciences, 2012, 9, 4835–4850.

    Article  CAS  Google Scholar 

  28. J. Marra, V. P. Lance, R. D. Vaillancourt, B. R. Hargreaves, Resolving the ocean’s euphotic zone, Deep Sea Res. Pt. I, 2014, 83, 45–50.

    Article  Google Scholar 

  29. D.-P. Häder, Penetration and effects of solar UV-B on phytoplankton and macroalgae, Plant Ecol., 1997, 128, 4–13.

    Article  Google Scholar 

  30. D.-P. Häder, Influence of ultraviolet radiation on phytoplankton ecosystems, in Algae, Environment and Human Affairs, ed. W. Wiessner, E. Schnepf and R. C. Starr, Biopress Limited, Bristol, England, 1995, pp. 41–55.

    Google Scholar 

  31. B. A. Bancroft, N. J. Baker, A. R. Blaustein, Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis, Ecol. Lett., 2007, 10, 332–345.

    Article  PubMed  Google Scholar 

  32. V. E. Villafañe, K. Sundbäck, F. L. Figueroa and E. W. Helbling, Photosynthesis in the aquatic environment as affected by UVR, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. E. Zagarese, Royal Society of Chemistry, London, 2003, pp. 357–397.

    Google Scholar 

  33. B. Olesen, S. C. Maberly, The effect of high levels of visible and ultra-violet radiation on the photosynthesis of phytoplankton from a freshwater lake, Arch. Hydrobiol., 2001, 151, 301–315.

    Article  CAS  Google Scholar 

  34. D.-P. Häder, H. D. Kumar, R. C. Smith, R. C. Worrest, Aquatic ecosystems: effects of solar ultraviolet radiation and interactions with other climatic change factors, Photochem. Photobiol. Sci., 2003, 2, 39–50.

    Article  PubMed  Google Scholar 

  35. M. D. Lamare, M. F. Barker, M. P. Lesser, C. Marshall, DNA photorepair in echinoid embryos: effects of temperature on repair rate in Antarctic and non-Antarctic species, J. Exp. Biol., 2006, 209, 5017–5028.

    Article  CAS  PubMed  Google Scholar 

  36. C. Wong, W. Chu, H. Marchant, S. Phang, Comparing the response of Antarctic, tropical and temperate microalgae to ultraviolet radiation (UVR) stress, J. Appl. Phycol., 2007, 19, 689–699.

    Article  Google Scholar 

  37. X. Yuan, K. Yin, P. J. Harrison, J. Zhang, Phytoplankton are more tolerant to UV than bacteria and viruses in the northern South China Sea, Aquat. Microb. Ecol., 2011, 65, 117–128.

    Article  Google Scholar 

  38. Y. Bettarel, T. Bouvier, M. Bouvy, Viral persistence in water as evaluated from a tropical/temperate cross-incubation, J. Plankton Res., 2009, 31, 909–916.

    Article  Google Scholar 

  39. S. W. Wilhelm, W. H. Jeffrey, A. L. Dean, J. Meador, J. D. Pakulski, D. L. Mitchell, UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean, Aquat. Microb. Ecol., 2003, 31, 1–8.

    Article  Google Scholar 

  40. S. Jacquet, G. Bratbak, Effects of ultraviolet radiation on marine virus-phytoplankton interactions, FEMS Microbiol. Ecol., 2003, 44, 279–289.

    Article  CAS  PubMed  Google Scholar 

  41. J. M. Manrique, A. Y. Calvo, S. R. Halac, V. E. Villafañe, L. R. Jones, E. W. Helbling, Effects of UV radiation on the taxonomic composition of natural bacterioplankton communities from Bahía Engaño (Patagonia, Argentina), J. Photochem. Photobiol., B, 2012, 117, 171–178.

    Article  CAS  Google Scholar 

  42. K. Whitehead, D. Karentz, J. I. Hedges, Mycosporine-like amino acids (MAAs) in phytoplankton, a herbivorous pteropod (Limacina helicina), and its pteropod predator (Clione antarctica) in McMurdo Bay, Antarctica, Mar. Biol., 2001, 139, 1013–1019.

    Article  CAS  Google Scholar 

  43. A. Oren, N. Gunde-Cimerman, Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?, FEMS Microbiol. Lett., 2007, 269, 1–10.

    Article  CAS  PubMed  Google Scholar 

  44. P. J. Janknegt, C. M. de Graaff, W. H. van De Poll, R. J. Visser, E. W. Helbling, A. G. Buma, Antioxidative responses of two marine microalgae during acclimation to static and fluctuating natural UV radiation, Photochem. Photobiol., 2009, 85, 1336–1345.

    Article  CAS  PubMed  Google Scholar 

  45. P. J. Janknegt, J. W. Rijstenbil, W. H. van de Poll, T. S. Gechev, A. G. Buma, A comparison of quantitative and qualitative superoxide dismutase assays for application to low temperature microalgae, J. Photochem. Photobiol., B, 2007, 87, 218–226.

    Article  CAS  Google Scholar 

  46. V. E. Villafañe, K. Gao, P. Li, E. W. Helbling, Vertical mixing within the epilimnion modulates UVR-induced photoinhibition in tropical freshwater phytoplankton from southern China, Freshwater Biol., 2007, 52, 1260–1270.

    Article  CAS  Google Scholar 

  47. Z. Cai, S. Duan, W. Wei, Darkness and UV radiation provoked compensatory growth in marine phytoplankton Phaeodactylum tricornutum (Bacillariophyceae), Aquacult. Res., 2009, 40, 1559–1562.

    Article  Google Scholar 

  48. C. Belzile, S. Demers, G. A. Ferreyra, I. Schloss, C. Nozais, K. Lacoste, B. Mostajir, S. Roy, M. Gosselin, E. Pelletier, UV effects on marine planktonic food webs: A synthesis of results from mesocosm studies, Photochem. Photobiol., 2006, 82, 850–856.

    Article  CAS  PubMed  Google Scholar 

  49. J. A. Raven, Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature, Plant Cell Environ., 1991, 14, 779–794.

    Article  CAS  Google Scholar 

  50. A. Neori, O. Holm-Hansen, Effect of temperature on rate of photosynthesis in Antarctic phytoplankton, Polar Biol., 1982, 1, 33–38.

    Article  CAS  Google Scholar 

  51. I. E. Huertas, M. Rouco, V. López-Rodas, E. Costas, Warming will affect phytoplankton differently: evidence through a mechanistic approach, Proc. R. Soc. London, B, 2011, 278, 3534–3543.

    Google Scholar 

  52. L. J. Falkenberg, B. D. Russell, S. D. Connell, Contrasting resource limitations of marine primary producers: Implications for competitive interactions under enriched CO2 and nutrient regimes, Oecologia, 2013, 172, 575–583.

    Article  PubMed  Google Scholar 

  53. G. M. Hallegraeff, Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge, J. Phycol., 2010, 46, 220–235.

    Article  CAS  Google Scholar 

  54. D. Bronk, J. See, P. Bradley, L. Killberg, DON as a source of bioavailable nitrogen for phytoplankton, Biogeosciences, 2007, 4, 283–296.

    Article  CAS  Google Scholar 

  55. A. Paytan, G. G. Shellenbarger, J. H. Street, M. E. Gonneea, K. Davis, M. B. Young, Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems, Limnol. Oceanogr., 2006, 51, 343–348.

    Article  CAS  Google Scholar 

  56. H. Harada, M. Vila-Costa, J. Cebrian, R. P. Kiene, Effects of UV radiation and nitrate limitation on the production of biogenic sulfur compounds by marine phytoplankton, Aquat. Bot., 2009, 90, 37–42.

    Article  CAS  Google Scholar 

  57. C. Labry, D. Delmas, A. Herbland, Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters (Bay of Biscay), J. Exp. Mar. Biol. Ecol., 2005, 318, 213–225.

    Article  CAS  Google Scholar 

  58. F. Roncarati, J. W. Rijstenbil, R. Pistocchi, Photosynthetic performance, oxidative damage and antioxidants in Cylindrotheca closterium in response to high irradiance, UVB radiation and salinity, Mar. Biol., 2008, 153, 965–973.

    Article  CAS  Google Scholar 

  59. U. Riebesell, K. G. Schulz, R. G. J. Bellerby, M. Botros, P. Fritsche, M. Meyerhöfer, C. Neill, G. Nondal, A. Oschlies, J. Wohlers, E. Zöllner, Enhanced biological carbon consumption in a high CO2 ocean, Nature, 2007, 450, 545–548.

    Article  CAS  PubMed  Google Scholar 

  60. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis, Blackwell Science, Massachusetts, USA, 1997.

    Google Scholar 

  61. J. Passarge, J. Huisman, U. Sommer and B. Worm, Competition in well-mixed habitats: From competitive exclusion to competitive chaos, in Competition and Coexistence, Springer-Verlag, Berlin, 2002, pp. 7–42.

    Chapter  Google Scholar 

  62. D. O. Hessen, P. Blomqvist, G. Dahl-Hansen, S. Drakare, E. S. Lindström, Production and food web interactions of Arctic freshwater plankton and responses to increased DOC, Arch. Hydrobiol., 2004, 159, 289–307.

    Article  Google Scholar 

  63. D. W. Schindler, J. P. Smol, Cumulative effects of climate warming and other human activities on freshwaters of Arctic and Subarctic North America, Ambio, 2006, 35, 160–168.

    Article  PubMed  Google Scholar 

  64. G. A. Ferreyra, B. Mostajir, I. R. Schloss, K. Chatila, M. E. Ferrario, P. Sargian, S. Roy, J. Prod’homme, S. Demers, Ultraviolet-B radiation effects on the structure and function of lower trophic levels of the marine planktonic food web, Photochem. Photobiol., 2006, 82, 887–897.

    Article  CAS  PubMed  Google Scholar 

  65. K. Gao, J. Xu, G. Gao, Y. Li, D. A. Hutchins, B. Huang, Y. Zheng, P. Jin, X. Cai, D.-P. Häder, W. Li, K. Xu, N. Liu, U. Riebesell, Rising carbon dioxide and increasing light exposure act synergistically to reduce marine primary productivity, Nat. Clim. Change, 2012, 2, 519–523.

    Article  CAS  Google Scholar 

  66. B. D. Russell, C. A. Passarelli, S. D. Connell, Forecasted CO2 modifies the influence of light in shaping subtidal habitat, J. Phycol., 2011, 47, 744–752.

    Article  PubMed  Google Scholar 

  67. P. W. Boyd, Beyond ocean acidification, Nat. Geosci., 2011, 4, 273–274.

    Article  CAS  Google Scholar 

  68. D.-P. Häder, E. W. Helbling, C. E. Williamson, R. C. Worrest, Effects of UV radiation on aquatic ecosystems and interactions with climate change, Photochem. Photobiol. Sci., 2011, 10, 242–260.

    Article  PubMed  CAS  Google Scholar 

  69. E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, V. E. Villafañe, Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe, Biogeosciences, 2013, 10, 1037–1050.

    Article  Google Scholar 

  70. G. Malanga, S. Puntarulo, Oxidative stress and antioxidant content in Chlorella vulgaris after exposure to ultraviolet-B radiation, Physiol. Plant., 1995, 94, 672–679.

    Article  CAS  Google Scholar 

  71. K. Xu, K. Gao, V. Villafañe, E. Helbling, Photosynthetic responses of Emiliania huxleyi to UV radiation and elevated temperature: roles of calcified coccoliths, Biogeosciences, 2011, 8, 1441–1452.

    Article  CAS  Google Scholar 

  72. J. E. Cloern, S. Q. Foster, A. E. Fleckner, Review: phytoplankton primary production in the world’s estuarine-coastal ecosystems, Biogeosci. Discuss., 2014, 10, 17725–17783.

    Google Scholar 

  73. G. C. Hays, A. J. Richardson, C. Robinson, Climate change and marine plankton, Trends Ecol. Evol., 2005, 20, 337–344.

    Article  PubMed  Google Scholar 

  74. M. Rajadurai, E. Poornima, S. Narasimhan, V. Rao, V. Venugopalan, Phytoplankton growth under temperature stress: laboratory studies using two diatoms from a tropical coastal power station site, J. Therm. Biol., 2005, 30, 299–305.

    Article  Google Scholar 

  75. P. W. Boyd and S. C. Doney, The impact of climate change and feedback processes on the ocean carbon cycle, in Ocean Biogeochemistry, ed. M. J. R. Fasham, Springer, 2003, pp. 157–193.

    Chapter  Google Scholar 

  76. G. Li, Y. Wu, K. Gao, Effects of Typhoon Kaemi on coastal phytoplankton assemblages in the South China Sea, with special reference to the effects of solar UV radiation, J. Geophys. Res.: Biogeosci., 2009, 114, G04029 10.1029/2008JG000896.

    Google Scholar 

  77. S. Ringuet, F. T. Mackenzie, Controls on nutrient and phytoplankton dynamics during normal flow and storm runoff conditions, southern Kaneohe Bay, Hawaii, Estuaries, 2005, 28, 327–337.

    Article  CAS  Google Scholar 

  78. C. D. Harley, A. Randall Hughes, K. M. Hultgren, B. G. Miner, C. J. Sorte, C. S. Thornber, L. F. Rodriguez, L. Tomanek, S. L. Williams, The impacts of climate change in coastal marine systems, Ecol. Lett., 2006, 9, 228–241.

    Article  PubMed  Google Scholar 

  79. B. M. Clark, Climate change: A looming challenge for fisheries management in southern Africa, Mar. Policy, 2006, 30, 84–95.

    Article  Google Scholar 

  80. J. Beardall, C. Sobrino, S. Stojkovic, Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers, Photochem. Photobiol. Sci., 2009, 8, 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  81. J. Beardall, S. Stojkovic, S. Larsen, Living in a high CO2 world: impacts of global climate change on marine phytoplankton, Plant Ecol. Divers., 2009, 2, 191–205.

    Article  Google Scholar 

  82. Z. V. Finkel, J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees, J. A. Raven, Phytoplankton in a changing world: cell size and elemental stoichiometry, J. Plankton Res., 2010, 32, 119–137.

    Article  CAS  Google Scholar 

  83. C. E. Williamson, C. Salm, S. L. Cooke, J. E. Saros, How do UV radiation, temperature, and zooplankton influence the dynamics of alpine phytoplankton communities?, Hydrobiologia, 2010, 648, 73–81.

    Article  Google Scholar 

  84. C. Ruiz-González, M. Galí, E. Sintes, G. J. Herndl, J. M. Gasol, R. Simó, Sunlight effects on the osmotrophic uptake of DMSP-sulfur and leucine by Polar phytoplankton, PLoS One, 2012, 7 10.1371/journal.pone.0045545.

  85. W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae, Nature, 2002, 418, 317–320.

    Article  CAS  PubMed  Google Scholar 

  86. U. Karsten, C. Wiencke, G. O. Kirst, The effect of light intensity and daylength on the β-dimethylsulphoniopropionate (DMSP) content of marine green macroalgae from Antarctica, Plant, Cell Environ., 1990, 13, 989–993.

    Article  CAS  Google Scholar 

  87. A. Merzouk, M. Levasseur, M. Scarratt, S. Michaud, M. Gosselin, Influence of dinoflagellate diurnal vertical migrations on dimethylsulfoniopropionate and dimethylsulfide distribution and dynamics (St. Lawrence Estuary, Canada), Can. J. Fish. Aquat. Sci., 2004, 61, 712–720.

    Article  CAS  Google Scholar 

  88. F. S. E. Buckley, S. M. Mudge, Dimethylsulphide and ocean-atmosphere interactions, Chem. Ecol., 2004, 20, 73–95.

    Article  CAS  Google Scholar 

  89. W. G. Sunda, D. R. Hardison, Contrasting seasonal patterns in dimethylsulfide, dimethylsulfoniopropionate, and chlorophyll a in a shallow North Carolina estuary and the Sargasso Sea, Aquat. Microb. Ecol., 2008, 53, 281–294.

    Article  Google Scholar 

  90. A. J. Trevena, G. B. Jones, Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting, Mar. Chem., 2006, 98, 210–222.

    Article  CAS  Google Scholar 

  91. W. G. Sunda, R. Hardison, R. P. Kiene, E. Bucciarelli, H. Harada, The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications, Aquat. Sci., 2007, 69, 341–351.

    Article  CAS  Google Scholar 

  92. M. B. Usher, Principles of Conserving the Arctic’s Biodiversity, in Arctic Climate Impact Assessment, ed. C. Symon, L. Arris and B. Heal, Cambridge University Press, New York, 2005.

    Google Scholar 

  93. C. Deser, J. E. Walsh, M. S. Timlin, Arctic sea ice variability in the context of recent atmospheric circulation trends, J. Clim., 2000, 13, 617–633.

    Article  Google Scholar 

  94. J. C. Comiso, C. L. Parkinson, R. Gersten, L. Stock, Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 2008, 35, L01703 10.1029/2007GL031972.

    Article  Google Scholar 

  95. http://nsidc.org, http://nsidc.org/arcticseaicenews/2012/09/arctic-sea-ice-extent-settles-at-record-seasonal-minimum/.

  96. http://earth.columbia.ed, http://earth.columbia.edu/articles/view/2993.

  97. D. A. Rothrock, Y. Yu, G. A. Maykut, Thinning of the Arctic sea-ice cover, Geophys. Res. Lett., 1999, 26, 3469–3472.

    Article  Google Scholar 

  98. M. Fischetti, Deep heat threatens marine life, Sci. Am., 2013, 2013, 72.

    Google Scholar 

  99. J. A. Screen, I. Simmonds, The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 2010, 464, 1334–1337.

    Article  CAS  PubMed  Google Scholar 

  100. J. F. Scinocca, M. C. Reader, D. A. Plummer, M. Sigmond, P. J. Kushner, T. G. Shepherd, A. R. Ravishankara, Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery, Geophys. Res. Lett., 2009, 36, L24701 10.1029/2009GL041239.

    Article  CAS  Google Scholar 

  101. B. Light, T. C. Grenfell, D. K. Perovich, Transmission and absorption of solar radiation by Arctic sea ice during the melt season, J. Geophys. Res., 2008, 113, C03023 10.1029/2006JC003977.

    Google Scholar 

  102. O. R. Anderson, Modern incursions of tropical Radiolaria into the Arctic Ocean, J. Micropalaeontol., 2012, 31, 139–158.

    Article  Google Scholar 

  103. W. Parry, Arctic’s Spring Phytoplankton Blooms Arrive Earlier, http://www.livescience.com/13082-arctic-plankton-blooms-ocean-climate-change.html.

  104. M. Kahru, V. Brotas, B. Manzano-Sarabia, B. G. Mitchell, Are phytoplankton blooms occurring earlier in the Arctic?, GCB, 2010, 17, 1733–1739.

    Google Scholar 

  105. Economist, http://www.economist.com/news/science-and-technology/21571386.

  106. M. Perrette, G. Quartly, E. E. Popova and A. Yool, in ESA Living Planet Symposium, European Space Agency (ESA Publication, SP-686), Bergen, 2010.

    Google Scholar 

  107. K. R. Arrigo, G. L. van Dijken, Secular trends in Arctic Ocean net primary production, J. Geophys. Res.: Oceans (1978-2012), 2011, 116, 160–168.

    Google Scholar 

  108. Z. Yanpei, J. Haiyan, C. Jianfang, W. Bin, L. Hongliang, C. Fajin, L. Yong, X. Jie, Nutrient status and phytoplankton-pigments response to ice melting in the Arctic Ocean, Adv. Polar Sci., 2012, 24, 151–158.

    Google Scholar 

  109. V. Alexander, H. J. Niebauer, Oceanography of the Eastern Bering Sea ice-edge zone in spring, Limnol. Oceanogr., 1981, 26, 1111–1125.

    Article  Google Scholar 

  110. V. Hill, G. F. Cota, D. Stockwell, Spring and summer phytoplankton communities in the Chukchi and Eastern Beaufort Seas, Deep Sea Res., Part II, 2005, 52, 3369–3385.

    Article  Google Scholar 

  111. A. Luchetta, M. Lipizer, G. Socal, Temporal evolution of primary production in the central Barents Sea, J. Mar. Syst., 2000, 27, 177–193.

    Article  Google Scholar 

  112. M. Perrette, A. Yool, G. D. Quartly, E. E. Popova, Near-ubiquity of ice-edge blooms in the Arctic, Biogeosciences, 2011, 8, 515–524.

    Article  Google Scholar 

  113. P. G. Falkowski, M. J. Oliver, Mix and match: how climate selects phytoplankton, Nature, 2007, 5, 813–819.

    CAS  Google Scholar 

  114. L. N. M. Duysens, Energy transformations in photosynthesis, Ann. Rev. Plant Physiol., 1956, 7, 25–50.

    Article  CAS  Google Scholar 

  115. A. Matsuoka, P. Larouche, M. Poulin, W. Vincent, H. Hattori, Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic, Estuarine, Coastal Shelf Sci., 2009, 82, 537–546.

    Article  CAS  Google Scholar 

  116. L. Morello ClimateWire, Thinning Arctic Ice Allows Plankton Bloom, Sci. Am., 2012, June, 289–307.

    Google Scholar 

  117. K. R. Arrigo, D. K. Perovich, R. S. Pickart, Z. W. Brown, G. L. van Dijken, K. E. Lowry, M. M. Mills, M. A. Palmer, W. M. Balch, F. Bahr, N. R. Bates, C. Benitez-Nelson, B. Bowler, E. Brownlee, J. K. Ehn, K. E. Frey, R. Garley, S. R. Laney, L. Lubelczyk, J. Mathis, A. Matsuoka, B. G. Mitchell, G. W. K. Moore, E. Ortega-Retuerta, S. Pal, C. M. Polashenski, R. A. Reynolds, B. Schieber, H. M. Sosik, M. Stephens, J. H. Swift, Massive phytoplankton blooms under Arctic sea ice, Science, 2012, 336, 1408.

    Article  CAS  PubMed  Google Scholar 

  118. R. Lindsey, Melt pond “skylights” enable massive under-ice bloom in Arctic, http://www.climatewatch.noaa.gov/article/2012/melt-pond-skylights-enable-massive-under-ice-bloom-in-arctic

  119. D. K. Perovich, A theoretical model of ultraviolet light transmission through Antarctic sea ice, J. Geophys. Res., 1993, 98,22,579-22, 587.

    Google Scholar 

  120. K. E. Frey, D. K. Perovich, B. Light, The spatial distribution of solar radiation under a melting Arctic sea ice cover, Geophys. Res. Lett., 2011, 38, L22501.

    Article  Google Scholar 

  121. E. C. Carmack, The Arctic Ocean’s freshwater budget: Sources, storage, and export, in The Freshwater Budget of the Arctic Ocean, ed. E. L. Lewis, Kluwer Acad., Norwell, Mass., 2000, pp. 91–126.

    Chapter  Google Scholar 

  122. R. G. M. Spencer, G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, P. J. Hernes, Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 2009, 36, L06401 10.1029/2008GL036831.

    Article  CAS  Google Scholar 

  123. C. U. I. Shikai, H. E. Jianfeng, H. E. Peimin, Z. Fang, L. Ling, M. A. Yuxin, The adaptation of Arctic phytoplankton to low light and salinity in Kongsfjorden (Spitsbergen), Adv. Polar Sci., 2012, 23, 19–24.

    Google Scholar 

  124. M. Steinacher, F. Joos, T. L. Froelicher, L. Bopp, P. Cadule, V. Cocco, S. C. Doney, M. Gehlen, K. Lindsay, J. K. Moore, B. Schneider, J. Segschneider, Projected 21st century decrease in marine productivity: a multi-model analysis, Biogeosciences, 2010, 7, 979–1005.

    Article  CAS  Google Scholar 

  125. M.-Y. Sun, L. M. Clough, M. L. Carroll, J. Dai, W. G. Ambrose Jr., G. R. Lopez, Different responses of two common Arctic macrobenthic species (Macoma balthica and Monoporeia affinis) to phytoplankton and ice algae: Will climate change impacts be species specific?, J. Exp. Mar. Biol. Ecol., 2009, 376, 110–121.

    Article  Google Scholar 

  126. S. Bélanger, M. Babin, J.-E. Tremblay, Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding, Biogeosciences, 2013, 10, 4087–4101.

    Article  Google Scholar 

  127. S. Rysgaard, T. G. Nielsen, B. W. Hansen, Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland, Mar. Ecol. Prog. Ser., 1999, 179, 13–25.

    Article  CAS  Google Scholar 

  128. A. Calbet, K. Riisgaard, E. Saiz, S. Zamora, C. A. Stedmon, T. Gissel Nielsen, Phytoplankton growth and microzooplankton grazing along a sub-Arctic fjord (Godthåbsfjord, west Greenland), Mar. Ecol. Prog. Ser., 2011, 442, 11–22.

    Article  CAS  Google Scholar 

  129. S. A. Wängberg, K. I. M. Andreasson, K. Gustavson, T. Reinthaler, P. Henriksen, UV-B effects on microplankton communities in Kongsfjord, Svalbard - A mesocosm experiment, J. Exp. Mar. Biol. Ecol., 2008, 365, 156–163.

    Article  Google Scholar 

  130. E. van Donk, B. A. Faafeng, H. J. de Lange and D. O. Hessen, Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway), in Plant Ecology. Special Issue: Responses of Plants to UV-B Radiation, ed. J. Rozema, Y. Manetas and L. O. Björn, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001, pp. 249–259.

    Google Scholar 

  131. D. G. Petersen, I. Dahllöf, Combined effects of pyrene and UV-light on algae and bacteria in an Arctic sediment, Ecotoxicology, 2007, 16, 371–377.

    Article  CAS  PubMed  Google Scholar 

  132. C. J. Galbán-Malagón, A. Cabrerizo, N. Berrojálbiz, M. J. Ojeda and J. Dachs, Air-water exchange and phytoplankton accumulation of persistent organic pollutants in the Greenland current and Arctic Ocean, http://132.246.11.198url/2012-ipy/pdf-all/ipy2012arAbstract00801.pdf.

  133. B. G. Mitchell, E. A. Brody, O. Holm-Hansen, C. R. McClain, J. Bishop, Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean, Limnol. Oceanogr., 1991, 36(8), 1662–1677.

    Article  Google Scholar 

  134. M. H. Taylor, M. Losch, A. Bracher, On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: a modeling approach, J. Geophys. Res., 2013, 118, 63–75.

    Article  Google Scholar 

  135. J. H. Martin, R. M. Gordon, S. E. Fitzwater, Iron in Antarctic waters, Nature, 1990, 345, 156–158.

    Article  CAS  Google Scholar 

  136. U. Sommer, Nitrate- and silicate-competition among antarctic phytoplankton, Mar. Biol., 1986, 91, 345–351.

    Article  CAS  Google Scholar 

  137. J. M. Rose, Y. Feng, G. R. DiTullio, R. B. Dunbar, C. E. Hare, P. A. Lee, M. Lohan, M. Long, W. O. Smith Jr., B. Sohst, S. Tozzi, Y. Zhang, D. A. Hutchins, Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages, Biogeosciences, 2009, 6, 3131–3147.

    Article  CAS  Google Scholar 

  138. B. Dold, E. Gonzalez-Toril, A. Aguilera, E. Lopez-Pamo, M. E. Cisternas, F. Bucchi, R. Amils, Acid rock drainage and rock weathering in Antarctica: Important sources for iron cycling in the Southern Ocean, Environ. Sci. Technol., 2013, 47, 6129–6136.

    Article  CAS  PubMed  Google Scholar 

  139. P. N. Sedwick, G. R. DiTullio, Regulation of algal blooms in Antarctic Shelf Waters by the release of iron from melting sea ice, Geophys. Res. Lett., 1997, 24, 2515–2518.

    Article  CAS  Google Scholar 

  140. A. Agustí, C. M. Duarte, Experimental induction of a large phytoplankton bloom in Antarctic coastal waters, Mar. Ecol. Prog. Ser., 2000, 206, 73–85.

    Article  Google Scholar 

  141. E. D. Ingall, J. M. Diaz, A. F. Longo, M. Oakes, L. Finney, S. Vogt, B. Lai, P. L. Yager, B. S. Twining, J. A. Brandes, Role of biogenic silica in the removal of iron from the Antarctic seas, Nat. Commun., 2013 10.1038/ncomms2981.

    Google Scholar 

  142. A. McMinn, N. Bleakley, K. Steinberner, D. Roberts, L. J. Trenerry, Effect of permanent sea ice cover and different nutrient regimes on the phytoplankton succession of fjords of the Vestfold Hills Oasis, eastern Antarctica, J. Plankton Res., 2000, 22, 287–303.

    Article  CAS  Google Scholar 

  143. K. R. Arrigo, G. L. van Dijken, Phytoplankton dynamics within 37 Antarctic coastal polynya systems, J. Geophys. Res., 2003, 108, 3271.

    Article  Google Scholar 

  144. C. Lancelot, S. Mathot, V. Veth, H. de Baar, Factors controlling phytoplankton ice-edge blooms in the marginal ice-zone of the northwestern Weddell Sea during sea ice retreat 1988: Field observations and mathematical modelling, Polar Biol., 1993, 13, 377–387.

    Article  Google Scholar 

  145. S.-H. Kang, J.-S. Kang, S. Lee, K. H. Chung, D. Kim, M. G. Park, Antarctic phytoplankton assemblages in the marginal ice zone of the Northwestern Weddell Sea, J. Plankton Res., 2001, 23, 333–352.

    Article  CAS  Google Scholar 

  146. K. M. Swadling, J. A. E. Gibson, D. A. Ritz, P. D. Nicols, D. E. Hughes, Grazing of phytoplankton by copepods in eastern Antarctic coastal waters, Mar. Biol., 1997, 128, 39–48.

    Article  Google Scholar 

  147. A. Atkinson, B. Meyer, D. Stübing, W. Hagen, K. Schmidt, U. V. Bathmann, Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter - II. Juveniles and adults, Limnol. Oceanogr., 2002, 47, 953–966.

    Article  Google Scholar 

  148. K. Schmidt, A. Atkinson, D. Stübing, J. W. McClelland, J. P. Montoya, M. Voss, Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach, Limnol. Oceanogr., 2003, 48, 277–289.

    Article  Google Scholar 

  149. A. Tanimura, S. Kawaguchi, N. Oka, J. Nishikawa, S. Toczko, K. T. Takahashi, M. Terazaki, T. Odate, M. Fukuchi, G. Hosie, Abundance and grazing impacts of krill, salps and copepods along the 140 °E meridian in the Southern Ocean during summer, Antarctic Sci., 2008, 20, 365–379.

    Article  Google Scholar 

  150. V. Siegel, V. Loeb, J. Gröger, Krill (Euphausia superba) density, proportional and absolute recruitment and biomass in the Elephant Island region (Antarctic Peninsula) during the period 1977 to 1997, Polar Biol., 1998, 19, 393–398.

    Article  Google Scholar 

  151. M. J. Whitehouse, A. Atkinson, A. P. Rees, Close coupling between ammonium uptake by phytoplankton and excretion by Antarctic krill, Euphausia superba, Deep Sea Res., Part I, 2011, 58, 725–732.

    Article  CAS  Google Scholar 

  152. K. R. Arrigo, D. H. Robinson, D. L. Worthen, R. B. Dunbar, G. R. DiTullio, M. VanWoert, M. P. Lizotte, Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean, Science, 1999, 283, 365–367.

    Article  CAS  PubMed  Google Scholar 

  153. S. S. Jacobs, On the nature and significance of the Antarctic slope front, Mar. Chem., 1991, 35, 9–24.

    Article  Google Scholar 

  154. J. Rodríguez, F. Jiménez-Gómez, J. M. Blanco, F. L. Figueroa, Physical gradients and spatial variability of the size structure and composition of phytoplankton in the Gerlache Strait (Antarctica), Deep Sea Res., Part II, 2002, 49, 693–706.

    Article  Google Scholar 

  155. I. Hense, R. Timmermann, A. Beckmann, U. V. Bathmann, Regional and interannual variability of ecosystem dynamics in the Southern Ocean, Ocean Dyn., 2003, 53, 1–10.

    Article  Google Scholar 

  156. O. Holm-Hansen, S. Z. El-Sayed, G. A. Franceschini, R. L. Cuhel and I. Smithsonian, Primary production and the factors controlling phytoplankton growth in the Southern ocean, in Adaptations within Antarctic ecosystems, Smithsonian Institution, Houston, Texas, 1977, pp. 11–50.

    Google Scholar 

  157. W. O. Smith Jr., J. Marra, M. R. Hiscock, R. T. Barber, The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica, Deep Sea Res., Part II, 2000, 47, 3119–3140.

    Article  CAS  Google Scholar 

  158. D. F. Doolittle, W. K. W. Li, M. Wood, Wintertime abundance of picoplankton in the Atlantic sector of the Southern Ocean, Nova Hedwigia, Beiheft, 2008, 133, 147–160.

    Google Scholar 

  159. D. G. Boyce, M. R. Lewis, B. Worm, Global phytoplankton decline over the past century, Nature, 2010, 466, 591–596.

    Article  CAS  PubMed  Google Scholar 

  160. A. Schmittner, A. Oschlies, H. D. Matthews, E. D. Galbraith, Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD, Global Biogeochem. Cycles, 2008, 22, GB1013 10.1029/2007GB002953.

    Article  CAS  Google Scholar 

  161. M. Montes-Hugo, S. C. Doney, H. W. Ducklow, W. Fraser, D. Martinson, S. E. Stammerjohn, O. Schofield, Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula, Science, 2009, 323, 1470–1473.

    Article  CAS  PubMed  Google Scholar 

  162. M. Hernando, I. Schloss, G. Malanga, S. Puntarulo, M. Hoffmeyer and G. Ferreyra, Impact of coastal melt-waters on the Antarctic phytoplankton, http://www.uam.esurl/otros/cn-scar/4th_SCAR_Open_Science/pdf/osc2010343.pdf.

  163. A. J. P. Houben, P. K. Bijl, J. Pross, S. M. Bohaty, S. Passchier, C. E. Stickley, U. Röhl, S. Sugisaki, L. Tauxe, T. van de Flierdt, M. Olney, F. Sangiorgi, A. Sluijs, C. Escutia, H. Brinkhuis, T. E. scientists, Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation, Science, 2013, 340, 341–344.

    Article  CAS  PubMed  Google Scholar 

  164. J. Overland, J. Turner, J. Francis, N. Gillett, G. Marshall, M. Tjernström, The Arctic and Antarctic: Two faces of climate change, Trans., Am. Geophys. Union, 2008, 89, 177–178.

    Article  Google Scholar 

  165. J. C. Farman, B. G. Gardiner, J. D. Shanklin, Large losses of total ozone in Antarctica reveal seasonal ClO x/NO x interaction, Nature, 1985, 315, 207–210.

    Article  CAS  Google Scholar 

  166. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas, S. Madronich, Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, 182–198.

    Article  CAS  PubMed  Google Scholar 

  167. R. C. Smith, B. B. Prézelin, K. S. Baker, R. R. Bidigare, N. P. Boucher, T. Coley, D. Karentz, S. MacIntyre, H. A. Matlick, D. Menzies, M. Ondrusek, Z. Wan, K. J. Waters, Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters, Science, 1992, 255, 952–959.

    Article  CAS  PubMed  Google Scholar 

  168. C. S. Weiler and P. A. Penhale, Ultraviolet radiation in Antarctica, in Measurements and Biological Effects, Am. Geophys. Union, Washington DC, 1994.

    Google Scholar 

  169. M. Vernet, E. A. Brody, O. Holm-Hansen and B. G. Mitchell, The response of Antarctic phytoplankton to ultraviolet radiation: absorption, photosynthesis, and taxonomic composition, in Ultraviolet Radiation in Antarctica: Mesurements and Biological Effects, ed. C. S. Weiler and P. A. Penhale, American Geophysical Union, Washington DC, 1994, pp. 207–227.

    Google Scholar 

  170. E. W. Helbling, B. E. Chalker, W. C. Dunlap, O. Holm-Hansen, V. E. Villafañe, Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation, J. Exp. Mar. Biol. Ecol., 1996, 204, 85–101.

    Article  Google Scholar 

  171. M. P. Lesser, P. J. Neale, J. J. Cullen, Acclimation of Antarctic phytoplankton to ultraviolet radiation: Ultraviolet-absorbing compounds and carbon fixation, Mol. Mar. Biol. Biotechnol., 1996, 5, 314–325.

    CAS  Google Scholar 

  172. N. P. Boucher, B. B. Prezelin, An in situ biological weighting function for UV inhibition of phytoplankton carbon fixation in the Southern Ocean, Mar. Ecol. Prog. Ser., 1996, 144, 223–236.

    Article  Google Scholar 

  173. O. Holm-Hansen, E. W. Helbling, D. Lubin, Ultraviolet radiation in Antarctica: inhibition of primary production, Photochem. Photobiol., 1993, 58, 567–570.

    Article  CAS  Google Scholar 

  174. B. Hamre, J. J. Stamnes, Ø. Frette, K. Stamnes, Could stratospheric ozone depletion lead to enhanced aquatic primary production in the polar regions?, Limnol. Oceanogr., 2008, 53, 332–338.

    Article  CAS  Google Scholar 

  175. J. J. Fritz, P. J. Neale, R. F. Davis, J. A. Peloquin, Response of Antarctic phytoplankton to solar UVR exposure: Inhibition and recovery of photosynthesis in coastal and pelagic assemblages, Mar. Ecol. Prog. Ser., 2008, 365, 1–16.

    Article  CAS  Google Scholar 

  176. E. W. Helbling, V. E. Villafañe and O. Holm-Hansen, Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing, in Ultraviolet Radiation in Antarctica: Mesurements and Biological Effects, ed. C. S. Weiler and P. A. Penhale, American Geophysical Union, Washington, DC, 1994, pp. 207–227.

    Chapter  Google Scholar 

  177. P. J. Neale, R. F. Davis, J. J. Cullen, Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton, Nature, 1998, 392, 585–589.

    Article  CAS  Google Scholar 

  178. H. U. Sverdrup, M. W. Johnson and R. H. Fleming, The Oceans. Their Physics, Chemistry, and General Biology, Prentice-Hall, Inc., New York (USA), 1942.

    Google Scholar 

  179. R. J. Gonçalves, M. S. Souza, J. Aigo, B. Modenutti, E. Balseiro, V. E. Villafañe, V. Cussac, E. W. Helbling, Responses of plankton and fish from temperate zones to UVR and temperature in a context of gobal change, Ecol. Austral, 2010, 20, 129–153.

    Google Scholar 

  180. V. E. Villafañe, E. S. Barbieri, E. W. Helbling, Annual patterns of ultraviolet radiation effects on temperate marine phytoplankton off Patagonia, Argentina, J. Plankton Res., 2004, 26, 167–174.

    Article  CAS  Google Scholar 

  181. A. Perelman, Z. Dubinsky, R. Martínez, Temperature dependence of superoxide dismutase activity in plankton, J. Exp. Mar. Biol. Ecol., 2006, 334, 229–235.

    Article  CAS  Google Scholar 

  182. C. Sobrino, P. J. Neale, Short-term and long-term effects of temperature on photosynthesis in the diatom Thalassiosira pseudonana under UVR exposures, J. Phycol., 2007, 43, 426–436.

    Article  CAS  Google Scholar 

  183. H. Bouman, T. Platt, S. Sathyendranath, V. Stuart, Dependence of light-saturated photosynthesis on temperature and community structure, Deep Sea Res., Part I, 2005, 52, 1284–1299.

    Article  Google Scholar 

  184. T. Sugawara, K. Hamasaki, T. Toda, T. Kikuchi, S. Taguchi, Response of natural phytoplankton assemblages to solar ultraviolet radiation (UV-B) in the coastal water, Japan, Hydrobiologia, 2003, 493, 17–26.

    Article  Google Scholar 

  185. E. W. Helbling, A. G. Buma, P. Boelen, H. J. van der Strate, M. V. Fiorda Giordanino, V. E. Villafañe, Increase in Rubisco activity and gene expression due to elevated temperature partially counteracts ultraviolet radiation-induced photoinhibition in the marine diatom Thalassiosira weissflogii, Limnol. Oceanogr., 2011, 56, 1330–1342.

    Article  CAS  Google Scholar 

  186. P. J. Neale, E. W. Helbling and H. E. Zagarese, Modulation of UVR exposure and effects by vertical mixing and advection, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. E. Zagarese, Royal Society of Chemistry, 2003, pp. 108–134.

    Google Scholar 

  187. K. Gao, Z. Ruan, V. E. Villafañe, J. P. Gattuso, E. W. Helbling, Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi, Limnol. Oceanogr., 2009, 54, 1855–1862.

    Article  CAS  Google Scholar 

  188. Z.-P. Mei, F. J. Saucier, V. Le Fouest, B. Zakardjian, S. Sennville, H. Xie, M. Starr, Modeling the timing of spring phytoplankton bloom and biological production of the Gulf of St. Lawrence (Canada): Effects of colored dissolved organic matter and temperature, Cont. Shelf Res., 2010, 30, 2027–2042.

    Article  Google Scholar 

  189. E. W. Helbling, D. E. Pérez, C. D. Medina, M. G. Lagunas, V. E. Villafañe, Phytoplankton distribution and photosynthesis dynamics in the Chubut River estuary (Patagonia, Argentina) throughout tidal cycles, Limnol. Oceanogr., 2010, 55, 55–65.

    Article  Google Scholar 

  190. M. Öztürk, P. L. Croot, S. Bertilsson, K. Abrahamsson, B. Karlson, R. David, A. Fransson, E. Sakshaug, Iron enrichment and photoreduction of iron under UV and PAR in the presence of hydroxycarboxylic acid: implications for phytoplankton growth in the Southern Ocean, Deep Sea Res., Part II, 2004, 51, 2841–2856.

    Article  CAS  Google Scholar 

  191. J. M. Beman, C.-E. Chow, A. L. King, Y. Feng, J. A. Fuhrman, A. Andersson, N. R. Bates, B. N. Popp, D. A. Hutchins, Global declines in oceanic nitrification rates as a consequence of ocean acidification, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 208–213.

    Article  CAS  PubMed  Google Scholar 

  192. P. A. Staehr, K. Sand-Jensen, Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities, Freshwater Biol., 2006, 51, 249–262.

    Article  CAS  Google Scholar 

  193. E. W. Helbling, E. S. Barbieri, M. A. Marcoval, R. J. Gonçalves, V. E. Villafañe, Impact of solar ultraviolet radiation on marine phytoplankton of Patagonia, Argentina, Photochem. Photobiol., 2005, 81, 807–818.

    Article  CAS  PubMed  Google Scholar 

  194. D.-I. Kim, Y. Matsuyama, S. Nagasoe, M. Yamaguchi, Y.-H. Yoon, Y. Oshima, N. Imada, T. Honjo, Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae), J. Plankton Res., 2004, 26, 61–66.

    Article  Google Scholar 

  195. J. M. Drake, D. M. Lodge, Global hot spots of biological invasions: evaluating options for ballast-water management, Proc. R. Soc. London, Ser. B, 2004, 271, 575–580.

    Article  Google Scholar 

  196. S. R. Halac, V. E. Villafañe, E. W. Helbling, Temperature benefits the photosynthetic performance of the diatoms Chaetoceros gracilis and Thalassiosira weissflogii when exposed to UVR, J. Photochem. Photobiol., B, 2010, 101, 196–205.

    Article  CAS  Google Scholar 

  197. M. Thyssen, G. Ferreyra, S. Moreau, I. Schloss, M. Denis, S. Demers, The combined effect of ultraviolet B radiation and temperature increase on phytoplankton dynamics and cell cycle using pulse shape recording flow cytometry, J. Exp. Mar. Biol. Ecol., 2011, 406, 95–107.

    Article  CAS  Google Scholar 

  198. E. S. Barbieri, V. E. Villafañe, E. W. Helbling, Experimental assessment of UV effects on temperate marine phytoplankton when exposed to variable radiation regimes, Limnol. Oceanogr., 2002, 47, 1648–1655.

    Article  Google Scholar 

  199. C. Mengelt, B. B. Prézelin, UVA enhancement of carbon fixation and resilience to UV inhibition in the genus Pseudo-nitzschia may provide a competitive advantage in high UV surface waters, Mar. Ecol. Prog. Ser., 2005, 301, 81–93.

    Article  CAS  Google Scholar 

  200. E. Litchman, P. J. Neale, UV effects on photosynthesis, growth and acclimation of an estuarine diatom and cryptomonad, Mar. Ecol. Prog. Ser., 2005, 300, 53–62.

    Article  CAS  Google Scholar 

  201. C. Llewellyn, D. Harbour, A temporal study of mycosporine-like amino acids in surface water phytoplankton from the English Channel and correlation with solar irradiation, J. Mar. Biol. Assoc. U. K., 2003, 83, 1–10.

    Article  CAS  Google Scholar 

  202. H. Taira, S. Aoki, B. Yamanoha, S. Taguchi, Daily variation in cellular content of UV-absorbing compounds mycosporine-like amino acids in the marine dinoflagellate Scrippsiella sweeneyae, J. Photochem. Photobiol., B, 2004, 75, 145–155.

    Article  CAS  Google Scholar 

  203. J. Bouchard, M. Longhi, S. Roy, D. Campbell, G. Ferreyra, Interaction of nitrogen status and UVB sensitivity in a temperate phytoplankton assemblage, J. Exp. Mar. Biol. Ecol., 2008, 359, 67–76.

    Article  CAS  Google Scholar 

  204. M. L. Longhi, G. Ferreyra, I. Schloss, S. Roy, Variable phytoplankton response to enhanced UV-B and nitrate addition in mesocosm experiments at three latitudes (Canada, Brazil and Argentina), Mar. Ecol. Prog. Ser., 2006, 313, 57–72.

    Article  CAS  Google Scholar 

  205. V. E. Villafañe, P. J. Janknegt, M. de Graaff, R. J. W. Visser, W. H. van de Poll, A. G. J. Buma, E. W. Helbling, UVR-induced photoinhibition of summer marine phytoplankton communities from Patagonia, Mar. Biol., 2008, 154, 1021–1029.

    Article  Google Scholar 

  206. J. N. Bouchard, S. Roy, D. A. Campbell, UVB effects on the photosystem II-D1 protein of phytoplankton and natural phytoplankton communities, Photochem. Photobiol., 2006, 82, 936–951.

    Article  CAS  PubMed  Google Scholar 

  207. M. Piepho, M. T. Arts, A. Wacker, Species-specific variation in fatty acid concentrations of four phytoplankton species: Does phosphorus supply influence the effect of light intensity or temperature?, J. Phycol., 2012, 48, 64–73.

    Article  CAS  PubMed  Google Scholar 

  208. T. Key, A. McCarthy, D. A. Campbell, C. Six, S. Roy, Z. V. Finkel, Cell size trade-offs govern light exploitation strategies in marine phytoplankton, Environ. Microbiol., 2010, 12, 95–104.

    Article  CAS  PubMed  Google Scholar 

  209. R. Sommaruga, J. S. Hofer, L. Alonso-Sáez, J. M. Gasol, Differential sunlight sensitivity of picophytoplankton from surface mediterranean coastal waters, Appl. Environ. Microbiol., 2005, 71, 2154–2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. X. Yuan, K. Yin, W. Zhou, W. Cao, X. Xu, D. Zhao, Effects of ultraviolet radiation B (UV-B) on photosynthesis of natural phytoplankton assemblages in a marine bay in Southern China, Chin. Sci. Bull., 2007, 52, 545–552.

    Article  Google Scholar 

  211. M. Llabrés, S. Agustí, P. Alonso-Laita, G. Herndl, Synechococcus and Prochlorococcus cell death induced by UV radiation and the penetration of lethal UVR in the Mediterranean Sea, Mar. Ecol. Prog. Ser., 2010, 399, 27–37.

    Article  CAS  Google Scholar 

  212. M. Llabrés, S. Agusti, Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities, Limnol. Oceanogr., 2006, 51, 21–29.

    Article  Google Scholar 

  213. M. Llabrés, S. Agustí, M. Fernández, A. Canepa, F. Maurin, F. Vidal, C. M. Duarte, Impact of elevated UVB radiation on marine biota: a meta-analysis, Global Ecol. Biogeogr., 2013, 22, 131–144.

    Article  Google Scholar 

  214. S. Agusti, M. Llabres, Solar radiationi-induced mortality of marine pico-phytoplankton in the oligotrophic ocean, Photochem. Photobiol., 2007, 83, 793–801.

    Article  CAS  PubMed  Google Scholar 

  215. E. W. Helbling, A. G. Buma, M. K. de Boer, V. E. Villafañe, In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton, Mar. Ecol. Prog. Ser., 2001, 211, 43–49.

    Article  CAS  Google Scholar 

  216. D. M. Martynova, N. A. Kazus, U. V. Bathmann, M. Graeve, A. A. Sukhotin, Seasonal abundance and feeding patterns of copepods Temora longicornis, Centropages hamatus and Acartia spp. in the White Sea (66 N), Polar Biol., 2011, 34, 1175–1195.

    Article  Google Scholar 

  217. H. J. de Lange, M. Lürling, Effects of UV-B irradiated algae on zooplankton grazing, Hydrobiologia, 2003, 491, 133–144.

    Article  Google Scholar 

  218. Y. Dandonneau, Y. Montel, J. Blanchot, J. Giraudeau, J. Neveux, Temporal variability in phytoplankton pigments, picoplankton and coccolithophores along a transect through the North Atlantic and tropical southwestern Pacific, Deep Sea Res., Part I, 2006, 53, 689–712.

    Article  CAS  Google Scholar 

  219. E. Teira, B. Mouriño, E. Marañón, V. Pérez, M. J. Pazó, P. Serret, D. de Armas, J. Escanez, E. M. S. Woodward, E. Fernández, Variability of chlorophyll and primary production in the Eastern North Atlantic Subtropical Gyre: potential factors affecting phytoplankton activity, Deep Sea Res., Part I, 2005, 52, 569–588.

    Article  CAS  Google Scholar 

  220. E. L. Venrick, The vertical distributions of chlorophyll and phytoplankton species in the North Pacific central environment, J. Plankton Res., 1988, 10(5), 987–998.

    Article  Google Scholar 

  221. Y. Chen, R. L. Siefert, Seasonal and spatial distributions and dry deposition fluxes of atmospheric total and labile iron over the tropical and subtropical North Atlantic Ocean, J. Geophys. Res., 2004, 109, D09305 10.1029/2003JD003958.

    Google Scholar 

  222. G. T. Taylor, F. E. Muller-Karger, R. C. Thunell, M. I. Scranton, Y. Astor, R. Varela, L. T. Ghinaglia, L. Lorenzoni, K. A. Fanning, S. Hameed, Ecosystem responses in the southern Caribbean Sea to global climate change, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 19315–19320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. T. Smyth, Penetration of UV irradiance into the global ocean, J. Geophys. Res., 2011, 116, C11020.

    Article  CAS  Google Scholar 

  224. D.-P. Häder, Photoinhibition and UV response in the aquatic environment, in Photoprotection, Photoinhibition, Gene Regulation, and Environment, ed. B. Demmig-Adams, W. W. Adams III and A. K. Mattoo, Springer, The Netherlands, 2006, pp. 87–105.

    Google Scholar 

  225. P. Conan, F. Joux, J.-P. Torréton, M. Pujo-Pay, T. Douki, E. Rochelle-Newall, X. Mari, Effect of solar ultraviolet radiation on bacterio-and phytoplankton activity in a large coral reef lagoon (southwest New Caledonia), Aquat. Microb. Ecol., 2008, 52, 83.

    Article  Google Scholar 

  226. K. Gao, G. Li, E. W. Helbling, V. E. Villafañe, Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea, Photochem. Photobiol., 2007, 83, 802–809.

    Article  CAS  PubMed  Google Scholar 

  227. G. Li, K. Gao, Cell size-dependent effects of solar UV radiation on primary production in coastal waters of the South China Sea, Estuaries Coasts, 2013, 1–9.

    Google Scholar 

  228. W. Guan, K. Gao, Impacts of UV radiation on photosynthesis and growth of the coccolithophore Emiliania huxleyi (Haptophyceae), Environ. Exp. Bot., 2010, 67, 502–508.

    Article  CAS  Google Scholar 

  229. W. Zhou, K. Yin, X. Yuan, X. Ning, Comparison of the effects of short-term UVB radiation exposure on phytoplankton photosynthesis in the temperate Changjiang and subtropical Zhujiang estuaries of China, J. Oceanogr., 2009, 65, 627–638.

    Article  Google Scholar 

  230. E. W. Helbling, K. Gao, R. J. Gonçalves, H. Wu, V. E. Villafañe, Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing, Mar. Ecol. Prog. Ser., 2003, 259, 59–66.

    Article  CAS  Google Scholar 

  231. A. D. McKinnon, A. J. Richardson, M. A. Burford and M. J. Furnas, in Effects on the Reef, The Great Barrier Reef Marine Park Authority, 2007.

    Google Scholar 

  232. S. R. Halac, S. D. Guendulain-García, V. E. Villafañe, E. W. Helbling, A. T. Banaszak, Responses of tropical plankton communities from the Mexican Caribbean to solar ultraviolet radiation exposure and increased temperature, J. Exp. Mar. Biol. Ecol., 2013, 445, 99–107.

    Article  Google Scholar 

  233. M. van den Belt, O. A. Bianciotto, R. Costanza, S. Demers, S. Diaz, G. A. Ferreyra, E. W. Koch, F. R. Momo, M. Vernet, Mediated modeling of the impacts of enhanced UV-B radiation on ecosystem services, Photochem. Photobiol., 2006, 82, 865–877.

    Article  PubMed  CAS  Google Scholar 

  234. K.-H. Gin, S. Koh, I.-I. Lin, Spectral irradiance profiles of suspended marine clay for the estimation of suspended sediment concentration in tropical waters, Int. J. Remote Sens., 2003, 24, 3235–3245.

    Article  Google Scholar 

  235. V. Kitidis, A. P. Stubbins, G. Uher, R. C. Upstill Goddard, C. S. Law, E. M. S. Woodward, Variability of chromophoric organic matter in surface waters of the Atlantic Ocean, Deep Sea Res., Part II, 2006, 53, 1666–1684.

    Article  Google Scholar 

  236. M. Tedetti, R. Sempéré, Penetration of ultraviolet radiation in the marine environment. A review, Photochem. Photobiol., 2006, 82, 389–397.

    Article  CAS  PubMed  Google Scholar 

  237. S. R. Erga, K. Aursland, Ø. Frette, B. Hamre, J. K. Lotsberg, J. Stamnes, J. Aure, F. Rey, K. Stamnes, UV transmission in Norwegian marine waters: controlling factors and possible effects on primary production and vertical distribution of phytoplankton, Mar. Ecol. Prog. Ser., 2005, 305, 79–100.

    Article  Google Scholar 

  238. A. G. J. Buma, R. J. Visser, W. van de Poll, V. E. Villafañe, P. J. Janknegt, E. W. Helbling, Wavelength-dependent xanthophyll cycle activity in marine microalgae exposed to natural ultraviolet radiation, Eur. J. Phycol., 2009, 44, 515–524.

    Article  CAS  Google Scholar 

  239. L. M. Ayoub, P. Hallock, P. G. Coble, S. S. Bell, MAA-like absorbing substances in Florida Keys phytoplankton vary with distance from shore and CDOM: Implications for coral reefs, J. Exp. Mar. Biol. Ecol., 2012, 420, 91–98.

    Article  CAS  Google Scholar 

  240. G. Li, K. Gao, G. Gao, Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea, Photochem. Photobiol., 2011, 87, 329–334.

    Article  CAS  PubMed  Google Scholar 

  241. F. Joux, W. H. Jeffrey, M. Abboudi, J. Neveux, M. Pujo-Pay, L. Oriol, J. J. Naudin, Ultraviolet radiation in the Rhone river lenses of low salinity and in marine waters of the northwestern Mediterranean sea: Attenuation and effects on bacterial activities and net community production, Photochem. Photobiol., 2009, 85, 783–793.

    Article  CAS  PubMed  Google Scholar 

  242. V. Stuart, O. Ulloa, G. Alarcón, S. Sathyendranath, H. Major, E. Head, T. Platt, Bio-optical characteristics of phytoplankton populations in the upwelling system off the coast of Chile, Rev. Chil. Hist. Nat., 2004, 77, 1.

    Article  Google Scholar 

  243. M. A. Marcoval, V. E. Villafañe, E. W. Helbling, Combined effects of solar ultraviolet radiation and nutrients addition on growth, biomass and taxonomic composition of coastal marine phytoplankton communities of Patagonia, J. Photochem. Photobiol., B, 2008, 91, 157–166.

    Article  CAS  Google Scholar 

  244. L. Aubriot, D. Conde, S. Bonilla, R. Sommaruga, Phosphate uptake behavior of natural phytoplankton during exposure to solar ultraviolet radiation in a shallow coastal lagoon, Mar. Biol., 2004, 144, 623–631.

    Article  CAS  Google Scholar 

  245. A. Keller, P. Hargraves, H. Jeon, G. Klein-MacPhee, E. Klos, C. Oviatt, J. Zhang, Effects of ultraviolet-B enhancement on marine trophic levels in a stratified coastal system, Mar. Biol., 1997, 130, 277–287.

    Article  Google Scholar 

  246. S. Roy, B. Mohovic, S. M. Gianesella, I. Schloss, M. Ferrario, S. Demers, Effects of enhanced UV-B on pigment-based phytoplankton biomass and composition of mesocosm-enclosed natural marine communities from three latitudes, Photochem. Photobiol., 2006, 82, 909–922.

    Article  CAS  PubMed  Google Scholar 

  247. C. M. Crain, B. S. Halpern, M. W. Beck, C. V. Kappel, Understanding and managing human threats to the coastal marine environment, Ann. N. Y. Acad. Sci., 2009, 1162, 39–62.

    Article  PubMed  Google Scholar 

  248. N. Bihari, B. Hamer, B. Kralj-Bilen, PAH content, toxicity and genotoxicity of coastal marine sediments from the Rovinj area, Northern Adriatic, Croatia, Sci. Total Environ., 2006, 366, 602–611.

    Article  CAS  PubMed  Google Scholar 

  249. R. B. Peachey, The synergism between hydrocarbon pollutants and UV radiation: a potential link between coastal pollution and larval mortality, J. Exp. Mar. Biol. Ecol., 2005, 315, 103–114.

    Article  CAS  Google Scholar 

  250. K. Ohwada, M. Nishimura, M. Wada, H. Nomura, A. Shibata, K. Okamoto, K. Toyoda, A. Yoshida, H. Takada, M. Yamada, Study of the effect of water-soluble fractions of heavy-oil on coastal marine organisms using enclosed ecosystems, mesocosms, Mar. Pollut. Bull., 2003, 47, 78–84.

    Article  CAS  PubMed  Google Scholar 

  251. N. Salas, L. Ortiz, M. Gilcoto, M. Varela, J. Bayona, S. Groom, X. A. Álvarez-Salgado, J. Albaiges, Fingerprinting petroleum hydrocarbons in plankton and surface sediments during the spring and early summer blooms in the Galician coast (NW Spain) after the Prestige oil spill, Mar. Environ. Res., 2006, 62, 388–413.

    Article  CAS  PubMed  Google Scholar 

  252. P. Sargian, B. Mostajir, K. Chatila, G. A. Ferreyra, É. Pelletier, S. Demers, Non-synergistic effects of water-soluble crude oil and enhanced ultraviolet-B radiation on a natural plankton assemblage, Mar. Ecol. Prog. Ser., 2005, 294, 63–77.

    Article  CAS  Google Scholar 

  253. E. Pelletier, P. Sargian, J. Payet, S. Demers, Ecotoxicological effects of combined UVB and organic contaminants in coastal waters: a review, Photochem. Photobiol., 2006, 82, 981–993.

    Article  CAS  PubMed  Google Scholar 

  254. P. Echeveste, S. Agustí, J. Dachs, Cell size dependence of additive versus synergetic effects of UV radiation and PAHs on oceanic phytoplankton, Environ. Pollut., 2011, 159, 1307–1316.

    Article  CAS  PubMed  Google Scholar 

  255. G. J. Herndl, A. Brugger, S. Hager, E. Kaiser, I. Obernosterer, B. Reitner, D. Slezak, Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter, Plant Ecol., 1997, 128, 42–51.

    Article  Google Scholar 

  256. C. Romera-Castillo, H. Sarmento, X. A. Álvarez-Salgado, J. M. Gasol, C. Marrasé, Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates, Appl. Environ. Microbiol., 2011, 77, 7490–7498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. M. Nieto-Cid, X. A. Álvarez-Salgado, F. F. Pérez, Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system, Limnol. Oceanogr., 2006, 51, 1391–1400.

    Article  CAS  Google Scholar 

  258. E. Kaiser, G. J. Herndl, Rapid recovery of marine bacterioplankton activity after inhibition by UV radiation in coastal waters, Appl. Environ. Microbiol., 1997, 63, 4026–4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. K. L. Hernández, R. A. Quiñones, G. Daneri, M. E. Farías, E. W. Helbling, Solar UV radiation modulates daily production and DNA damage of marine bacterioplankton from a productive upwelling zone (36 °S), Chile, J. Exp. Mar. Biol. Ecol., 2007, 343, 82–95.

    Article  CAS  Google Scholar 

  260. L. Alonso-Sáez, J. M. Gasol, T. Lefort, J. Hofer, R. Sommaruga, Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in northwestern Mediterranean coastal waters, Appl. Environ. Microbiol., 2006, 72, 5806–5813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. D. P. Morris, H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. Modenutti, R. Moeller, C. Queimalinos, The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon, Limnol. Oceanogr., 1995, 40, 1381–1391.

    Article  CAS  Google Scholar 

  262. M. T. Arts, R. D. Robarts, F. Kasai, M. J. Waiser, V. P. Tumber, A. J. Plante, H. Rai, H. J. de Lange, The attenuation of ultraviolet radiation in high dissolved organic carbon waters of wetlands and lakes on the northern Great Plains, Limnol. Oceanogr., 2000, 45, 292–299.

    Article  CAS  Google Scholar 

  263. B. E. Modenutti, E. G. Balseiro, J. J. Elser, M. Bastidas Navarro, F. Cuassolo, C. Laspoumaderes, M. S. Souza, M. S. Díaz Villanueva, Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes, Limnol. Oceanogr., 2013, 58, 1165–1175

    Article  Google Scholar 

  264. P. Carrillo, J. A. Delgado-Molina, J. M. Medina-Sánchez, F. J. Bullejos, M. Villar-Argaiz, Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake, GCB, 2008, 14, 423–439.

    Google Scholar 

  265. R. J. Goncalves, E. S. Barbieri, V. E. Villafane, E. W. Helbling, Motility of Daphnia spinulata as affected by solar radiation throughout an annual cycle in mid-latitudes of Patagonia, Photochem. Photobiol., 2007, 83, 824–832.

    Article  CAS  PubMed  Google Scholar 

  266. R. Sommaruga, G. Augustin, Seasonality in UV transparency of an alpine lake is associated to changes in phytoplankton biomass, Aquat. Sci., 2006, 68, 129–141.

    Article  Google Scholar 

  267. M. Alam, N. Jahan, L. Thalib, B. Wei, T. Maekawa, Effects of environmental factors on the seasonally change of phytoplankton populations in a closed freshwater pond, Environ. Int., 2001, 27, 363–371.

    Article  CAS  PubMed  Google Scholar 

  268. M. Søndergaard, N. H. Borch, B. Riemann, Dynamics of biodegradable DOC produced by freshwater plankton communities, Aquat. Microb. Ecol., 2000, 23, 73–83.

    Article  Google Scholar 

  269. M. Blumthaler and A. R. Webb, UVR climatology, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. E. Zagarese, The Royal Society of Chemistry, Cambridge, 2003, pp. 21–58.

    Google Scholar 

  270. R. Sommaruga, The role of solar UV radiation in the ecology of alpine lakes, J. Photochem. Photobiol., B, 2001, 62, 35–42.

    Article  CAS  Google Scholar 

  271. W. B. Keller, J. Heneberry, J. Leduc, J. Gunn, N. Yan, Variations in epilimnion thickness in small boreal shield lakes: Relationships with transparency, weather and acidification, Environ. Monit. Assess., 2006, 115, 419–431.

    Article  CAS  PubMed  Google Scholar 

  272. A. M. Paterson, K. M. Somers, P. J. Dillon, J. Heneberry, W. B. Keller, A. Ford, Relationships between dissolved organic carbon concentrations, weather, and acidification in small Boreal Shield lakes, Can. J. Fish. Aquat. Sci., 2008, 65, 786–795.

    Article  Google Scholar 

  273. J. W. Harrison, R. E. H. Smith, Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities, Photochem. Photobiol. Sci., 2009, 8, 1218–1232.

    Article  CAS  PubMed  Google Scholar 

  274. M. C. Marinone, S. M. Marque, D. A. Suárez, M. del Carmen Diéguez, P. Pérez, P. de Los Ríos, D. Soto, H. E. Zagarese, UV radiation as a potential driving force for zooplankton community structure in Patagonian lakes, Photochem. Photobiol., 2006, 82, 962–971.

    Article  CAS  PubMed  Google Scholar 

  275. M. Jansson, A.-K. Bergström, P. Blomqvist, S. Drakare, Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes, Ecology, 2000, 81, 3250–3255.

    Article  Google Scholar 

  276. H. J. de Lange, D. P. Morris, C. E. Williamson, Solar ultraviolet photodegradation of DOC may stimulate freshwater food webs, J. Plankton Res., 2003, 25, 111–117.

    Article  Google Scholar 

  277. J. Köhler, M. Schmitt, H. Krumbeck, M. Kapfer, E. Litchman, P. J. Neale, Effects of UV on carbon assimilation of phytoplankton in a mixed water column, Aquat. Sci., 2001, 63, 294–309.

    Article  Google Scholar 

  278. M. A. Xenopoulos, P. C. Frost, J. J. Elser, Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition, Ecology, 2002, 83, 423–435.

    Article  Google Scholar 

  279. M. A. Xenopoulos, P. C. Frost, UV radiation, phosphorus, and their combined effects on the taxonomic composition of phytoplankton in a boreal lake, J. Phycol., 2003, 39, 291–302.

    Article  CAS  Google Scholar 

  280. M. Villar-Argaiz, J. M. Medina-Sánchez, F. J. Bullejos, J. A. Delgado-Molina, O. R. Pérez, J. C. Navarro, UV radiation and phosphorus interact to influence the biochemical composition of phytoplankton, Freshwater Biol., 2009, 54, 1233–1245.

    Article  CAS  Google Scholar 

  281. H. J. de Lange, P. L. van Reeuwijk, Negative effects of UVB-irradiated phytoplankton on life history traits and fitness of Daphnia magna, Freshwater Biol., 2003, 48, 678–686.

    Article  Google Scholar 

  282. A. E. Mcnamara, W. R. Hill, UV-B irradiance gradient affects photosynthesis and pigments but not food quality of periphyton, Freshwater Biol., 2000, 43, 649–662.

    Article  Google Scholar 

  283. R. P. Sinha, D.-P. Häder, UV-induced DNA damage and repair: a review, Photochem. Photobiol. Sci., 2002, 1, 225–236.

    Article  CAS  PubMed  Google Scholar 

  284. R. P. Sinha, M. Dautz, D.-P. Häder, A simple and efficient method for the quantitative analysis of thymine dimers in cyanobacteria, phytoplankton and macroalgae, Acta Protozool., 2001, 40, 187–195.

    CAS  Google Scholar 

  285. Y. Y. He, D.-P. Häder, Reactive oxygen species and UV-B: effect on cyanobacteria, Photochem. Photobiol. Sci., 2002, 1, 729–736.

    Article  CAS  PubMed  Google Scholar 

  286. L. Chen, S. Deng, R. de Philippis, W. Tian, H. Wu, J. Wang, UV-B resistance as a criterion for the selection of desert microalgae to be utilized for inoculating desert soils, J. Appl. Phycol., 2013, 25, 1009–1015.

    Article  CAS  Google Scholar 

  287. C. Callieri, G. Morabito, Y. Huot, P. J. Neale, E. Litchman, Photosynthetic response of pico-and nanoplanktonic algae to UVB, UVA and PAR in a high mountain lake, Aquat. Sci., 2001, 63, 286–293.

    Article  Google Scholar 

  288. P. Li, W. Liu, K. Gao, Effects of temperature, pH, and UV radiation on alkaline phosphatase activity in the terrestrial cyanobacterium Nostoc flagelliforme, J. Appl. Phycol., 2012, 25, 1031–1038.

    Article  CAS  Google Scholar 

  289. J. Fauchot, M. Gosselin, M. Levasseur, B. Mostajir, C. Belzile, S. Demers, S. Roy, P. Z. Villegas, Influence of UV-B radiation on nitrogen utilization by a natural assemblage of phytoplankton, J. Phycol., 2000, 36, 484–496.

    Article  CAS  PubMed  Google Scholar 

  290. I. Laurion, A. Lami, R. Sommaruga, Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages, Aquat. Microb. Ecol., 2002, 26, 283–294.

    Article  Google Scholar 

  291. R. P. Sinha, S. P. Singh, D.-P. Häder, Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals, J. Photochem. Photobiol., B, 2007, 89, 29–35.

    Article  CAS  Google Scholar 

  292. A. Gröniger, R. P. Sinha, M. Klisch, D.-P. Häder, Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae - a database, J. Photochem. Photobiol., B, 2000, 58, 115–122.

    Article  Google Scholar 

  293. Z. Liu, D.-P. Häder, R. Sommaruga, Occurrence of mycosporine-like amino acids (MAAs) in the bloom-forming cyanobacterium Microcystis aeruginosa, J. Plankton Res., 2004, 26, 963–966.

    Article  CAS  Google Scholar 

  294. P. Blokker, S. Schouten, J. W. de Leeuw, J. S. Sinnighe Damst, H. van den Ende, Molecular structure of the resistant biopolymer in zygospore cell walls of Chlamydomonas monoica, Planta, 1999, 207, 539–543.

    Article  CAS  Google Scholar 

  295. H. L. Gorton, T. C. Vogelmann, Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille, Photochem. Photobiol., 2003, 77, 608–615.

    Article  CAS  PubMed  Google Scholar 

  296. F. Xiong, J. Komenda, J. Kopecky, L. Nedbal, Strategies of ultraviolet-B protection in microscopic algae, Physiol. Plant., 1997, 100, 378–388.

    Article  CAS  Google Scholar 

  297. F. Pescheck, K. Bischof, W. Bilger, Screening of ultraviolet-A and ultraviolet-B radiation in marine green macroalgae (Chlorophyta), J. Phycol., 2010, 46, 444.

    Article  CAS  Google Scholar 

  298. K. P. van Winkle-Swift, W. L. Rickoll, The zygospore wall of Chlamydomonas monoica (Chlorophyceae): morphogenesis and evidence for the presence of sporopollenin, J. Phycol., 1997, 33, 655–665.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donat-P. Häder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Häder, DP., Villafañe, V.E. & Helbling, E.W. Productivity of aquatic primary producers under global climate change. Photochem Photobiol Sci 13, 1370–1392 (2014). https://doi.org/10.1039/c3pp50418b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50418b

Navigation