Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A potentially functional polymorphism in ABCG2 predicts clinical outcome of non-small cell lung cancer in a Chinese population

Abstract

ABCG2, CD133 and CD117 are pivotal markers of cancer stem cell, which are involved in carcinogenesis and cancer progression. The expression of these genes has been reported to be associated with the development and progression of many cancers, including non-small cell lung cancer (NSCLC). We selected and genotyped 9 potentially functional single-nucleotide polymorphisms in the 3 genes in a clinical cohort of 1001 NSCLC patients in a Chinese population. We found that variant genotypes of ABCG2 rs3114020 were associated with a significantly increased risk of death for NSCLC (additive model: adjusted hazard ratio=1.25, 95% confidence intervals=1.10–1.42, P<0.001). Further stepwise regression analysis suggested that rs3114020 was an independent risk factor for the prognosis of NSCLC. Besides, histology interacted with the genetic effect of rs3114020 in relation to NSCLC survival in the interaction analysis. Our findings show that ABCG2 rs3114020 might be one of the candidate biomarkers for NSCLC survival in this Chinese population, especially among patients with adenocarcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  2. Gandara D, Narayan S, Lara PN Jr, Goldberg Z, Davies A, Lau DH et al. Integration of novel therapeutics into combined modality therapy of locally advanced non-small cell lung cancer. Clin Cancer Res 2005; 11: 5057s–5062s.

    Article  CAS  PubMed  Google Scholar 

  3. Yin M, Liao Z, Huang YJ, Liu Z, Yuan X, Gomez D et al. Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy. PLoS One 2011; 6: e20055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosell R, Cecere F, Santarpia M, Reguart N, Taron M . Predicting the outcome of chemotherapy for lung cancer. Curr Opin Pharmacol 2006; 6: 323–331.

    Article  CAS  PubMed  Google Scholar 

  5. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 2008; 14: 123–129.

    Article  CAS  PubMed  Google Scholar 

  6. Horst D, Kriegl L, Engel J, Kirchner T, Jung A . CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer 2008; 99: 1285–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  8. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    Article  CAS  PubMed  Google Scholar 

  9. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 2009; 27: 2875–2883.

    CAS  PubMed  Google Scholar 

  10. Hu N, Wang C, Ng D, Clifford R, Yang HH, Tang ZZ et al. Genomic characterization of esophageal squamous cell carcinoma from a high-risk population in China. Cancer Res 2009; 69: 5908–5917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng BJ, Huang W, Shugart YY, Lee MK, Zhang F, Xia JC et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet 2002; 31: 395–399.

    Article  CAS  PubMed  Google Scholar 

  12. Petersen S, Aninat-Meyer M, Schluns K, Gellert K, Dietel M, Petersen I . Chromosomal alterations in the clonal evolution to the metastatic stage of squamous cell carcinomas of the lung. Br J Cancer 2000; 82: 65–73.

    Article  CAS  PubMed  Google Scholar 

  13. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 2009; 106: 16281–16286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moreira AL, Gonen M, Rekhtman N, Downey RJ . Progenitor stem cell marker expression by pulmonary carcinomas. Mod Pathol 2010; 23: 889–895.

    Article  CAS  PubMed  Google Scholar 

  15. Ho MM, Ng AV, Lam S, Hung JY . Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67: 4827–4833.

    Article  CAS  PubMed  Google Scholar 

  16. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE . Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 2008; 3: e3077.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Verzijl A, Heide R, Oranje AP, van Schaik RH . C-kit Asp-816-Val mutation analysis in patients with mastocytosis. Dermatology 2007; 214: 15–20.

    Article  CAS  PubMed  Google Scholar 

  18. Corless CL, Fletcher JA, Heinrich MC . Biology of gastrointestinal stromal tumors. J Clin Oncol 2004; 22: 3813–3825.

    Article  CAS  PubMed  Google Scholar 

  19. Reilly JT . Class III receptor tyrosine kinases: role in leukaemogenesis. Br J Haematol 2002; 116: 744–757.

    Article  CAS  PubMed  Google Scholar 

  20. Ramos AH, Dutt A, Mermel C, Perner S, Cho J, Lafargue CJ et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther 2009; 8: 2042–2050.

    Article  CAS  PubMed  Google Scholar 

  21. Scheffer GL, Pijnenborg AC, Smit EF, Muller M, Postma DS, Timens W et al. Multidrug resistance related molecules in human and murine lung. J Clin Pathol 2002; 55: 332–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoh K, Ishii G, Yokose T, Minegishi Y, Tsuta K, Goto K et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res 2004; 10: 1691–1697.

    Article  CAS  PubMed  Google Scholar 

  23. Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 2002; 1: 611–616.

    CAS  PubMed  Google Scholar 

  24. Yanase K, Tsukahara S, Mitsuhashi J, Sugimoto Y . Functional SNPs of the breast cancer resistance protein-therapeutic effects and inhibitor development. Cancer Lett 2006; 234: 73–80.

    Article  CAS  PubMed  Google Scholar 

  25. Muller PJ, Dally H, Klappenecker CN, Edler L, Jager B, Gerst M et al. Polymorphisms in ABCG2, ABCC3 and CNT1 genes and their possible impact on chemotherapy outcome of lung cancer patients. Int J Cancer 2009; 124: 1669–1674.

    Article  PubMed  Google Scholar 

  26. Salnikov AV, Gladkich J, Moldenhauer G, Volm M, Mattern J, Herr I . CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. Int J Cancer 2010; 126: 950–958.

    CAS  PubMed  Google Scholar 

  27. Herpel E, Jensen K, Muley T, Warth A, Schnabel PA, Meister M et al. The cancer stem cell antigens CD133, BCRP1/ABCG2 and CD117/c-KIT are not associated with prognosis in resected early-stage non-small cell lung cancer. Anticancer Res 2011; 31: 4491–4500.

    PubMed  Google Scholar 

  28. Gottschling S, Jensen K, Herth FJ, Thomas M, Schnabel PA, Herpel E . Lack of prognostic significance of neuroendocrine differentiation and stem cell antigen co-expression in resected early-stage non-small cell lung cancer. Anticancer Res 2013; 33: 981–990.

    PubMed  Google Scholar 

  29. Li F, Zeng H, Ying K . The combination of stem cell markers CD133 and ABCG2 predicts relapse in stage I non-small cell lung carcinomas. Med Oncol 2011; 28: 1458–1462.

    Article  CAS  PubMed  Google Scholar 

  30. Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 2008; 118: 2600–2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin G, Miao R, Hu Z, Xu L, Huang X, Chen Y et al. Putative functional polymorphisms of MMP9 predict survival of NSCLC in a Chinese population. Int J Cancer 2009; 124: 2172–2178.

    Article  CAS  PubMed  Google Scholar 

  32. Xu Z, Taylor JA . SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 2009; 37: W600–W605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krishnamurthy P, Schuetz JD . Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 2006; 46: 381–410.

    Article  CAS  PubMed  Google Scholar 

  34. Maliepaard M, van Gastelen MA, Tohgo A, Hausheer FH, van Waardenburg RC, de Jong LA et al. Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin Cancer Res 2001; 7: 935–941.

    CAS  PubMed  Google Scholar 

  35. Mao Q, Unadkat JD . Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 2005; 7: E118–E133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarkadi B, Ozvegy-Laczka C, Nemet K, Varadi A . ABCG2 — a transporter for all seasons. FEBS Lett 2004; 567: 116–120.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  38. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 2008; 3: e2637.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang F, Liang YJ, Wu XP, Chen LM, To KK, Dai CL et al. Prognostic value of the multidrug resistance transporter ABCG2 gene polymorphisms in Chinese patients with de novo acute leukaemia. Eur J Cancer 2011; 47: 1990–1999.

    Article  CAS  PubMed  Google Scholar 

  40. Campa D, Butterbach K, Slager SL, Skibola CF, de Sanjose S, Benavente Y et al. A comprehensive study of polymorphisms in the ABCB1, ABCC2, ABCG2, NR1I2 genes and lymphoma risk. Int J Cancer 2012; 131: 803–812.

    Article  CAS  PubMed  Google Scholar 

  41. Poonkuzhali B, Lamba J, Strom S, Sparreboom A, Thummel K, Watkins P et al. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms. Drug Metab Dispos 2008; 36: 780–795.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng M, Yang L, Yang R, Yang X, Deng J, Yu B et al. A microRNA-135a/b binding polymorphism in CD133 confers decreased risk and favorable prognosis of lung cancer in Chinese by reducing CD133 expression. Carcinogenesis 2013; 34: 2292–2299.

    Article  CAS  PubMed  Google Scholar 

  43. Pohl A, El-Khoueiry A, Yang D, Zhang W, Lurje G, Ning Y et al. Pharmacogenetic profiling of CD133 is associated with response rate (RR) and progression-free survival (PFS) in patients with metastatic colorectal cancer (mCRC), treated with bevacizumab-based chemotherapy. Pharmacogenomics J 2013; 13: 173–180.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Q, Liu H, Xiong H, Liu Z, Wang LE, Qian J et al. Polymorphisms at the microRNA binding-site of the stem cell marker gene CD133 modify susceptibility to and survival of gastric cancer. Mol Carcinog 2013; 54: 449–458.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (81270044 and 81230067), National Outstanding Youth Science Foundation of China (81225020), Science Foundation for Distinguished Young Scholars of Jiangsu (BK2012042), New Century Excellent Talents in University (NCET-10-0178), Changjiang Scholars and Innovative Research Team in University (IRT0631), The Young Talents Support Program from the Organization Department of the CPC Central Committee, Jiangsu Province Clinical Science and Technology Projects (BL2012008) and Priority Academic Program Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Ma or H Shen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhu, M., Shen, W. et al. A potentially functional polymorphism in ABCG2 predicts clinical outcome of non-small cell lung cancer in a Chinese population. Pharmacogenomics J 17, 280–285 (2017). https://doi.org/10.1038/tpj.2016.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.2

This article is cited by

Search

Quick links