Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids

Abstract

Screening of therapeutics relies on representative cancer models. The representation of human glioblastoma by in vitro cell culture models is questionable. We obtained genomic profiles by array comparative genomic hybridization of both short- and long-term primary cell and spheroid cultures, derived from seven glioblastomas and one anaplastic oligodendroglioma. Chromosomal copy numbers were compared between cell cultures and spheroids and related to the parental gliomas using unsupervised hierarchical clustering and correlation coefficient. In seven out of eight short-term cell cultures, the genomic profiles clustered further apart from their parental tumors than spheroid cultures. In four out of eight samples, the genetic changes in cell culture were substantial. The average correlation coefficient between parental tumors and spheroid profiles was 0.89 (range: 0.79–0.97), whereas that between parental tumors and cell cultures was 0.62 (range: 0.10–0.96). In two out of three long-term cell cultures progressive genetic changes had developed, whereas the spheroid cultures were genetically stable. It is concluded that genomic profiles of primary cell cultures from glioblastoma are frequently deviant from parental tumor profiles, whereas spheroids are genetically more representative of the glioblastoma. This implies that glioma cell culture data have to be handled with the highest caution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Autio R, Hautaniemi S, Kauraniemi P, Yli-Harja O, Astola J, Wolf M et al. (2003). CGH-Plotter: MATLAB toolbox for CGH-data analysis. Bioinformatics 19: 1714–1715.

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P et al. (2005). NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res 33: D562–D566.

    Article  CAS  PubMed  Google Scholar 

  • Bigner SH, Mark J, Bigner DD . (1987). Chromosomal progression of malignant human gliomas from biopsy to establishment as permanent lines in vitro. Cancer Genet Cytogenet 24: 163–176.

    Article  CAS  PubMed  Google Scholar 

  • Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO . (1990). Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 72: 463–475.

    Article  CAS  PubMed  Google Scholar 

  • Burton EC, Lamborn KR, Feuerstein BG, Prados M, Scott J, Forsyth P et al. (2002). Genetic aberrations defined by comparative genomic hybridization distinguish long-term from typical survivors of glioblastoma. Cancer Res 62: 6205–6210.

    CAS  PubMed  Google Scholar 

  • Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR et al. (1998). Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90: 1473–1479.

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D . (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann C, Kluwe L, Lucke M, Westphal M . (1999). The rate of homozygous CDKN2A/p16 deletions in glioma cell lines and in primary tumors. Int J Oncol 15: 975–982.

    CAS  PubMed  Google Scholar 

  • Izumoto S, Arita N, Ohnishi T, Hiraga S, Taki T, Hayakawa T . (1995). Homozygous deletions of p16INK4A/MTS1 and p15INK4B/MTS2 genes in glioma cells and primary glioma tissues. Cancer Lett 97: 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA . (2002). Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet 135: 147–159.

    Article  CAS  PubMed  Google Scholar 

  • Kotliarov Y, Steed ME, Christopher N, Walling J, Su Q, Center A et al. (2006). High-resolution global genomic survey of 178 gliomas reveals novel regions of copy number alteration and allelic imbalances. Cancer Res 66: 9428–9436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391–403.

    Article  CAS  PubMed  Google Scholar 

  • Loeper S, Romeike BF, Heckmann N, Jung V, Henn W, Feiden W et al. (2001). Frequent mitotic errors in tumor cells of genetically micro-heterogeneous glioblastomas. Cytogenet Cell Genet 94: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Pandita A, Aldape KD, Zadeh G, Guha A, James CD . (2004). Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer 39: 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Smeets SJ, Braakhuis BJ, Abbas S, Snijders PJ, Ylstra B, van de Wiel MA et al. (2006). Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene 25: 2558–2564.

    Article  CAS  PubMed  Google Scholar 

  • Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J et al. (2001). Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29: 263–264.

    Article  CAS  PubMed  Google Scholar 

  • Steilen-Gimbel H, Steudel WI, Feiden W, Moringlane JR, Henn W, Zang KD . (1999). Genetic heterogeneity in human astrocytomas: spatial distribution of P16 and TP53 deletions in biopsies. Cancer Genet Cytogenet 113: 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland RM . (1988). Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240: 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Voskoglou-Nomikos T, Pater JL, Seymour L . (2003). Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9: 4227–4239.

    PubMed  Google Scholar 

  • Wolff JE, Trilling T, Molenkamp G, Egeler RM, Jurgens H . (1999). Chemosensitivity of glioma cells in vitro: a meta analysis. J Cancer Res Clin Oncol 125: 481–486.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr RH Wessel, Mr T Krugers, Mr A Mršiç, Mrs M Tijssen and Mrs W Tigchelaar are kindly acknowledged for their skillful technical assistance, and the Departments of Neurosurgery of the Academic Medical Center from the University of Amsterdam and of the VU University Medical Center, for providing tumor material. We thank Mrs TMS Pierik for her excellent assistance with preparation of the manuscript format.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P C De Witt Hamer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Witt Hamer, P., Van Tilborg, A., Eijk, P. et al. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27, 2091–2096 (2008). https://doi.org/10.1038/sj.onc.1210850

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210850

Keywords

This article is cited by

Search

Quick links