Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential mitotic degradation of the CDC25B phosphatase variants

Abstract

CDC25 phosphatases control cell-cycle progression by dephosphorylating and activating cyclin-dependent kinases. CDC25B, one of the three members of this family in human cells, is thought to regulate initial mitotic events. CDC25B is an unstable protein whose proteasomal degradation is proposed to be controlled by β-TrCP. Here, we have investigated the regulation of CDC25B during mitosis, using time-lapse video microscopy. We found that CDC25B expression is high during early mitosis, and that its degradation occurs after the metaphase–anaphase transition and cyclin B1 destruction. We also show that CDC25B degradation after metaphase is dependent on the integrity of the KEN-box and RRKSE motifs that are located within the alternatively spliced B domain, and that the CDC25B2 splice variant, that lacks this domain, is stable during mitosis. Furthermore, we show that the N-terminal region of CDC25B, encompassing the B domain, undergoes major conformational changes during mitosis that can be monitored by intramolecular fluorescence resonance energy transfer variation of specific CDC25B biosensors. This study demonstrates that CDC25B splice variants have differential mitotic stabilities, a feature that is likely to have major consequences on the local control of cyclin-dependent kinase–cyclin activities during mitotic progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Baldin V, Cans C, Knibiehler M, Ducommun B . (1997a). Phosphorylation of human CDC25B phosphatase by CDK1/cyclin A triggers its proteasome-dependent degradation. J Biol Chem 272: 32731–32735.

    Article  CAS  Google Scholar 

  • Baldin V, Cans C, Superti-Furga G, Ducommun B . (1997b). Alternative splicing of the human CDC25B tyrosine phoshatase. Possible implications for growth control? Oncogene 14: 2485–2495.

    Article  CAS  Google Scholar 

  • Baldin V, Pelpel K, Cazales M, Cans C, Ducommun B . (2002). Nuclear localization of CDC25B1 and serine 146 integrity are required for induction of mitosis. J Biol Chem 277: 35176–35182.

    Article  CAS  Google Scholar 

  • Baldin V, Theis-Febvre N, Benne C, Froment C, Cazales M, Burlet-Schiltz O et al. (2003). PKB/Akt phosphorylates the CDC25B phosphatase and regulates its intracellular localisation. Biol Cell 95: 547–554.

    Article  CAS  Google Scholar 

  • Boutros R, Dozier C, Ducommun B . (2006). The when and where of CDC25 phosphatases. Curr Opin Cell Biol 18: 185–191.

    Article  CAS  Google Scholar 

  • Bugler B, Quaranta M, Aressy B, Brezak MC, Prevost G, Ducommun B . (2006). Genotoxic-activated G2–M checkpoint exit is dependent on CDC25B phosphatase expression. Mol Cancer Ther 5: 1446–1451.

    Article  CAS  Google Scholar 

  • Bulavin DV, Amundson SA, Fornace AJ . (2002). p38 and Chk1 kinases: different conductors for the G(2)/M checkpoint symphony. Curr Opin Genet Dev 12: 92–97.

    Article  CAS  Google Scholar 

  • Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV et al. (2003). Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426: 87–91.

    Article  CAS  Google Scholar 

  • Cans C, Ducommun B, Baldin V . (1999). Proteasome-dependent degradation of human CDC25B phosphatase. Mol Biol Reports 26: 53–57.

    Article  CAS  Google Scholar 

  • Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, Ducommun B . (2005). CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 4: 1233–1238.

    Article  CAS  Google Scholar 

  • Chen F, Zhang Z, Bower J, Lu Y, Leonard SS, Ding M et al. (2002). Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin–proteasome pathway. Proc Natl Acad Sci USA 99: 1990–1995.

    Article  CAS  Google Scholar 

  • Clute P, Pines J . (1999). Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1: 82–87.

    Article  CAS  Google Scholar 

  • Davezac N, Baldin V, Gabrielli B, Forrest A, Theis-Febvre N, Yashida M et al. (2000). Regulation of CDC25B phosphatases subcellular localization. Oncogene 19: 2179–2185.

    Article  CAS  Google Scholar 

  • Donzelli M, Busino L, Chiesa M, Ganoth D, Hershko A, Draetta GF . (2004). Hierarchical order of phosphorylation events commits Cdc25A to betaTrCP-dependent degradation. Cell Cycle 3: 469–471.

    Article  CAS  Google Scholar 

  • Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M, Draetta GF . (2002). Dual mode of degradation of Cdc25 A phosphatase. EMBO J 21: 4875–4884.

    Article  CAS  Google Scholar 

  • Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, Dozier C et al. (2004). Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2/M transition. J Cell Sci 117: 2523–2531.

    Article  CAS  Google Scholar 

  • Escalas N, Davezac N, De Rycke J, Baldin V, Mazars R, Ducommun B . (2000). Study of the cytolethal distending toxin-induced cell cycle arrest in HeLa cells: involvement of the CDC25 phosphatase. Exp Cell Res 257: 206–212.

    Article  CAS  Google Scholar 

  • Forrest AR, McCormack AK, DeSouza CP, Sinnamon JM, Tonks ID, Hayward NK et al. (1999). Multiple splicing variants of cdc25B regulate G2/M progression. Biochem Biophys Res Commun 260: 510–515.

    Article  CAS  Google Scholar 

  • Gabrielli BG, De Souza CPC, Tonks ID, Clarck JM, Hatward NK, Ellem KAO . (1996). Cytoplasmic accumulation of CDC25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J Cell Sci 109: 1081–1093.

    CAS  PubMed  Google Scholar 

  • Hernandez S, Bessa X, Bea S, Hernandez L, Nadal A, Mallofre C et al. (2001). Differential expression of cdc25 cell-cycle-activating phosphatases in human colorectal carcinoma. Lab Invest 81: 465–473.

    Article  CAS  Google Scholar 

  • Hernandez S, Hernandez L, Bea S, Pinyol M, Nayach I, Bellosillo B et al. (2000). cdc25a and the splicing variant cdc25b2, but not cdc25B1, -B3 or -C, are over-expressed in aggressive human non-Hodgkin's lymphomas. Int J Cancer 89: 148–152.

    Article  CAS  Google Scholar 

  • Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge SJ et al. (2003). SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 17: 3062–3074.

    Article  CAS  Google Scholar 

  • Kanemori Y, Uto K, Sagata N . (2005). TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci USA 102: 6279–6284.

    Article  CAS  Google Scholar 

  • Karlsson C, Katich S, Hagting A, Hoffmann I, Pines J . (1999). Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J Cell Biol 146: 573–584.

    Article  CAS  Google Scholar 

  • Korner K, Jerome V, Schmidt T, Muller R . (2001). Cell cycle regulation of the murine cdc25B promoter: essential role for nuclear factor-Y and a proximal repressor element. J Biol Chem 276: 9662–9669.

    Article  CAS  Google Scholar 

  • Kristjansdottir K, Rudolph J . (2004). Cdc25 phosphatases and cancer. Chem Biol 11: 1043–1051.

    Article  CAS  Google Scholar 

  • Lemaire M, Froment C, Boutros R, Mondesert O, Nebreda AR, Monsarrat B et al. (2006). CDC25B phosphorylation by p38 and MK-2. Cell Cycle 5: 1649–1653.

    Article  CAS  Google Scholar 

  • Lindqvist A, Kallstrom H, Karlsson Rosenthal C . (2004). Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress. J Cell Sci 117: 4979–4990.

    Article  CAS  Google Scholar 

  • Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK . (2005). Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 171: 35–45.

    Article  CAS  Google Scholar 

  • Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AE, Yaffe MB . (2005). MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 17: 37–48.

    Article  CAS  Google Scholar 

  • Mirey G, Chartrain I, Froment C, Quaranta M, Bouche JP, Monsarrat B et al. (2005). CDC25B phosphorylated by pEg3 localizes to the centrosome and the spindle poles at mitosis. Cell Cycle 4: 806–811.

    Article  CAS  Google Scholar 

  • Miyata H, Doki Y, Yamamoto H, Kishi K, Takemoto H, Fujiwara Y et al. (2001). Overexpression of CDC25B overrides radiation-induced G2–M arrest and results in increased apoptosis in esophageal cancer cells. Cancer Res 61: 3188–3193.

    CAS  PubMed  Google Scholar 

  • Miyawaki A, Tsien RY . (2000). Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 327: 472–500.

    Article  CAS  Google Scholar 

  • Morgan DO . (1995). Principles of CDK regulation. Nature 374: 131–134.

    Article  CAS  Google Scholar 

  • Nishijima H, Nishitani H, Seki T, Nishimoto T . (1997). A dual-specificity phosphatase Cdc25B is an unstable protein and triggers p34(cdc2)/cyclin B activation in hamster BHK21 cells arrested with hydroxyurea. J Cell Biol 138: 1105–1116.

    Article  CAS  Google Scholar 

  • Pfleger CM, Kirschner MW . (2000). The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14: 655–665.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C . (2006). CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 119: 4265–4275.

    Article  Google Scholar 

  • Theis-Febvre N, Filhol O, Froment C, Cazales M, Cochet C, Monsarrat B et al. (2003). Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene 22: 220–232.

    Article  CAS  Google Scholar 

  • van Vugt MA, Bras A, Medema RH . (2004). Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 15: 799–811.

    Article  CAS  Google Scholar 

  • van Vugt MA, Medema RH . (2005). Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24: 2844–2859.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Rose Boutros for comments and suggestions on the manuscript, Martine Cazales and Christine Didier for help and technical support. We thank R Tsien, W Earnshaw and D Piston for plasmids and reagents. This work was supported by the CNRS, l'Université Paul Sabatier and la Ligue Nationale Contre le Cancer to BD (Equipe labellisée 2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Ducommun.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kieffer, I., Lorenzo, C., Dozier, C. et al. Differential mitotic degradation of the CDC25B phosphatase variants. Oncogene 26, 7847–7858 (2007). https://doi.org/10.1038/sj.onc.1210596

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210596

Keywords

This article is cited by

Search

Quick links