Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway

Abstract

FDH (10-formyltetrahydrofolate dehydrogenase) is strongly downregulated in tumors while its elevation suppresses proliferation of cancer cells and induces p53-dependent apoptosis. We have previously shown that FDH induces phosphorylation of p53 at Ser6, which is a required step in the activation of apoptosis. In the present study, we report that FDH-induced p53 phosphorylation is carried out by JNK1 and JNK2 (c-Jun N-terminal kinases) working in concert. We have demonstrated that FDH induces phosphorylation of JNK1 and JNK2, while treatment of FDH-expressing cells with JNK inhibitor SP600125, as well as knockdown of JNK1 or JNK2 by siRNA, prevents phosphorylation of p53 at Ser6 and protects cells from apoptosis. Interestingly, the knockdown of JNK1 abolished phosphorylation of JNK2 in response to FDH, while knockdown of JNK2 did not prevent JNK1 phosphorylation. Pull-down assay with the p53-specific antibody has shown that JNK2, but not JNK1, is physically associated with p53. Our studies revealed a novel mechanism in which phosphorylation of JNK2 is mediated by JNK1 before phosphorylation of p53, and then p53 is directly phosphorylated by JNK2 at Ser6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Anguera MC, Field MS, Perry C, Ghandour H, Chiang EP, Selhub J et al. (2006). Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase. J Biol Chem 281: 18335–18342.

    Article  CAS  Google Scholar 

  • Appella E, Anderson CW . (2001). Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268: 2764–2772.

    Article  CAS  Google Scholar 

  • Bain J, McLauchlan H, Elliott M, Cohen P . (2003). The specificities of protein kinase inhibitors: an update. Biochem J 371: 199–204.

    Article  CAS  Google Scholar 

  • Barr RK, Kendrick TS, Bogoyevitch MA . (2002). Identification of the critical features of a small peptide inhibitor of JNK activity. J Biol Chem 277: 10987–10997.

    Article  CAS  Google Scholar 

  • Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W et al. (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98: 13681–13686.

    Article  CAS  Google Scholar 

  • Bost F, McKay R, Bost M, Potapova O, Dean NM, Mercola D . (1999). The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol 19: 1938–1949.

    Article  CAS  Google Scholar 

  • Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S et al. (2001). Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 21: 2743–2754.

    Article  CAS  Google Scholar 

  • Champion KM, Cook RJ, Tollaksen SL, Giometti CS . (1994). Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice. Proc Natl Acad Sci USA 91: 11338–11342.

    Article  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P . (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95–105.

    Article  CAS  Google Scholar 

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

    Article  CAS  Google Scholar 

  • Du L, Lyle CS, Obey TB, Gaarde WA, Muir JA, Bennett BL et al. (2004). Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: evidence that mitotic Bcl-2 phosphorylation is JNK-independent. J Biol Chem 279: 11957–11966.

    Article  CAS  Google Scholar 

  • Fogarty MP, Downer EJ, Campbell V . (2003). A role for c-Jun N-terminal kinase 1 (JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons. Biochem J 371: 789–798.

    Article  CAS  Google Scholar 

  • Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN et al. (1998a). JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev 12: 2658–2663.

    Article  CAS  Google Scholar 

  • Fuchs SY, Adler V, Pincus MR, Ronai Z . (1998b). MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci USA 95: 10541–10546.

    Article  CAS  Google Scholar 

  • Gille H, Kortenjann M, Thomae O, Moomaw C, Slaughter C, Cobb MH et al. (1995). ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14: 951–962.

    Article  CAS  Google Scholar 

  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B et al. (1996). Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15: 2760–2770.

    Article  CAS  Google Scholar 

  • Higashimoto Y, Saito S, Tong XH, Hong A, Sakaguchi K, Appella E et al. (2000). Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agents. J Biol Chem 275: 23199–23203.

    Article  CAS  Google Scholar 

  • Hu MC, Qiu WR, Wang YP . (1997). JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases. Oncogene 15: 2277–2287.

    Article  CAS  Google Scholar 

  • Kallunki T, Su B, Tsigelny I, Sluss HK, Derijard B, Moore G et al. (1994). JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev 8: 2996–3007.

    Article  CAS  Google Scholar 

  • Kelemen BR, Hsiao K, Goueli SA . (2002). Selective in vivo inhibition of mitogen-activated protein kinase activation using cell-permeable peptides. J Biol Chem 277: 8741–8748.

    Article  CAS  Google Scholar 

  • Knippschild U, Milne DM, Campbell LE, DeMaggio AJ, Christenson E, Hoekstra MF et al. (1997). p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs. Oncogene 15: 1727–1736.

    Article  CAS  Google Scholar 

  • Krupenko SA, Oleinik NV . (2002). 10-formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells. Cell Growth Differ 13: 227–236.

    CAS  PubMed  Google Scholar 

  • Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA . (1999). The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22: 667–676.

    Article  CAS  Google Scholar 

  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF et al. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160.

    Article  CAS  Google Scholar 

  • Leppa S, Bohmann D . (1999). Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene 18: 6158–6162.

    Article  CAS  Google Scholar 

  • Liu J, Minemoto Y, Lin A . (2004). c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis. Mol Cell Biol 24: 10844–10856.

    Article  CAS  Google Scholar 

  • Livingstone C, Patel G, Jones N . (1995). ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J 14: 1785–1797.

    Article  CAS  Google Scholar 

  • Milne DM, Campbell LE, Campbell DG, Meek DW . (1995). p53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1. J Biol Chem 270: 5511–5518.

    Article  CAS  Google Scholar 

  • Min H, Shane B, Stokstad EL . (1988). Identification of 10-formyltetrahydrofolate dehydrogenase-hydrolase as a major folate binding protein in liver cytosol. Biochim Biophys Acta 967: 348–353.

    Article  CAS  Google Scholar 

  • Oleinik NV, Krupenko NI, Priest DG, Krupenko SA . (2005). Cancer cells activate p53 in response to 10-formyltetrahydrofolate dehydrogenase expression. Biochem J 391: 503–511.

    Article  CAS  Google Scholar 

  • Oleinik NV, Krupenko SA . (2003). Ectopic expression of 10-formyltetrahydrofolate dehydrogenase in a549 cells induces g(1) cell cycle arrest and apoptosis. Mol Cancer Res 1: 577–588.

    CAS  PubMed  Google Scholar 

  • Oren M . (2003). Decision making by p53: life, death and cancer. Cell Death Differ 10: 431–442.

    Article  CAS  Google Scholar 

  • Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF . (2004). Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 15: 713–725.

    Article  CAS  Google Scholar 

  • Sabapathy K, Hu Y, Kallunki T, Schreiber M, David JP, Jochum W et al. (1999). JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr Biol 9: 116–125.

    Article  CAS  Google Scholar 

  • Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J et al. (1999). Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 13: 607–619.

    Article  CAS  Google Scholar 

  • Smith LM, Wise SC, Hendricks DT, Sabichi AL, Bos T, Reddy P et al. (1999). cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene 18: 6063–6070.

    Article  CAS  Google Scholar 

  • Tafolla E, Wang S, Wong B, Leong J, Kapila YL . (2005). JNK1 and JNK2 oppositely regulate p53 in signaling linked to apoptosis triggered by an altered fibronectin matrix: JNK links FAK and p53. J Biol Chem 280: 19992–19999.

    Article  CAS  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874.

    Article  CAS  Google Scholar 

  • Ventura JJ, Hubner A, Zhang C, Flavell RA, Shokat KM, Davis RJ . (2006). Chemical genetic analysis of the time course of signal transduction by JNK. Mol Cell 21: 701–710.

    Article  CAS  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  Google Scholar 

  • Weston CR, Davis RJ . (2007). The JNK signal transduction pathway. Curr Opin Cell Biol 19: 142–149.

    Article  CAS  Google Scholar 

  • Wisdom R, Johnson RS, Moore C . (1999). c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18: 188–197.

    Article  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME . (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Margaret Kelly for assistance with confocal microscopy. Confocal microscopy was performed in the Hollings Cancer Center Molecular Imaging Core Facility. This work was supported by the NIH grant CA95030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Krupenko.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleinik, N., Krupenko, N. & Krupenko, S. Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene 26, 7222–7230 (2007). https://doi.org/10.1038/sj.onc.1210526

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210526

Keywords

This article is cited by

Search

Quick links