Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of p101 activates PI3Kγ signaling in T cells and contributes to cell survival

Abstract

p101, the regulatory subunit of phosphatidylinositol-3-kinase-gamma (PI3Kγ), was recently reported as a common site of retroviral insertion in T-cell lymphomas induced in mice by MoFe2-MuLV, a unique recombinant gammaretrovirus. The common interruption of p101 by retroviral integration suggests that the locus encodes an oncogene whose altered expression is related to the induction of T-cell malignancy. To examine a possible role in the malignant process, p101 was overexpressed in human T-cell lines Molt-4 and Jurkat. Transient overexpression of p101 induced apoptosis in recipient cells; however, stable expression could be established in cells that expressed moderate levels of p101. Constitutive p101 overexpression in those cells conferred significant protection against ultraviolet-induced apoptosis. Protection against apoptotic induction was attributed to p101-mediated activation of the Akt pathway. Constitutive overexpression of p101 enhanced the activity of p110γ and further sensitized it to activation upon stimulation of G protein-coupled receptor. These findings are the first to implicate altered expression of p101 in malignancy, specifically in T-cell lymphoma. The findings further provide insight into the regulation of p110γ, indicating that the stoichiometry of p110γ and p101 are important in regulating PI3Kγ signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abdel-Mageed A, Agrawal KC . (1997). Antisense down-regulation of metallothionein induces growth arrest and apoptosis in human breast carcinoma cells. Cancer Gene Ther 4: 199–207.

    CAS  PubMed  Google Scholar 

  • Bader AG, Kang S, Vogt PK . (2006). Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA 103: 1475–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock C, Schaefer M, Reusch HP, Czupalla C, Michalke M, Spicher K et al. (2003). Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3-kinase gamma. J Cell Biol 160: 89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG et al. (1997). Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57: 4997–5000.

    CAS  PubMed  Google Scholar 

  • Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS et al. (2004). Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64: 7678–7681.

    Article  CAS  PubMed  Google Scholar 

  • Curnock AP, Logan MK, Ward SG . (2002). Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology 105: 125–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foukas LC, Daniele N, Ktori C, Anderson KE, Jensen J, Shepherd PR . (2002). Direct effects of caffeine and theophylline on p110 delta and other phosphoinositide 3-kinases. J Biol Chem 277: 37124–37130.

    Article  CAS  PubMed  Google Scholar 

  • Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG . (2002). Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol 169: 5441–5450.

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Arnold CN, Niedzwiecki D, Carethers JM, Dowell JM, Wasserman L et al. (2004). Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res 64: 3014–3021.

    Article  CAS  PubMed  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN . (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16: 653–699.

    Article  CAS  PubMed  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004.

    Article  CAS  PubMed  Google Scholar 

  • Hickey FB, Cotter TG . (2006). BCR-ABL regulates phosphatidylinositol 3-kinase-p110gamma transcription and activation and is required for proliferation and drug resistance. J Biol Chem 281: 2441–2450.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L et al. (2000). Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287: 1049–1053.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez C, Jones DR, Rodriguez-Viciana P, Gonzalez-Garcia A, Leonardo E, Wennstrom S et al. (1998). Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J 17: 743–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson C, Lobelle-Rich PA, Puetter A, Levy LS . (2005). Substitution of feline leukemia virus long terminal repeat sequences into murine leukemia virus alters the pattern of insertional activation and identifies new common insertion sites. J Virol 79: 57–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jucker M, Sudel K, Horn S, Sickel M, Wegner W, Fiedler W et al. (2002). Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia 16: 894–901.

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Bader AG, Zhao L, Vogt PK . (2005). Mutated PI 3-kinases: cancer targets on a silver platter. Cell Cycle 4: 578–581.

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Denley A, Vanhaesebroeck B, Vogt PK . (2006). Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci USA 103: 1289–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Kumagai T, Vora J, Bose N, Sehgal I, Koeffler PH et al. (2004). PTEN promoter is methylated in a proportion of invasive breast cancers. Int J Cancer 112: 407–410.

    Article  CAS  PubMed  Google Scholar 

  • Okkenhaug K, Vanhaesebroeck B . (2003). PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3: 317–330.

    Article  CAS  PubMed  Google Scholar 

  • Samuels Y, Velculescu VE . (2004). Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3: 1221–1224.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL, Bolon B et al. (2000). Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287: 1040–1046.

    Article  CAS  PubMed  Google Scholar 

  • Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C et al. (1999). PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21: 99–102.

    Article  CAS  PubMed  Google Scholar 

  • Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT . (1994). A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 77: 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J et al. (1997). The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89: 105–114.

    Article  CAS  PubMed  Google Scholar 

  • Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L . (2005). p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr Biol 15: 566–570.

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Alessi DR . (2000). The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346: 561–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ et al. (1997). P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci USA 94: 4330–4335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt P, Brock C, Nurnberg B, Schaefer M . (2005). Assigning functional domains within the p101 regulatory subunit of phosphoinositide 3-kinase gamma. J Biol Chem 280: 5121–5127.

    Article  CAS  PubMed  Google Scholar 

  • Voigt P, Dorner MB, Schaefer M . (2006). Characterization of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase gamma that is highly expressed in heart and interacts with PDE3B. J Biol Chem 281: 9977–9986.

    Article  CAS  PubMed  Google Scholar 

  • Woenckhaus J, Steger K, Werner E, Fenic I, Gamerdinger U, Dreyer T et al. (2002). Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J Pathol 198: 335–342.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the valuable advice and assistance of Aline Scandurro, Kent Buchanan and Chandtip Chandhasin. This work was supported by PHS grant CA83823 from the National Cancer Institute, by a grant from the Ladies Leukemia League and by Support Funds of the Louisiana Cancer Research Consortium. Chassidy Johnson was supported in part by grants from the Cancer Association of Greater New Orleans and the American Association for Cancer Research Save the Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L S Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, C., Marriott, S. & Levy, L. Overexpression of p101 activates PI3Kγ signaling in T cells and contributes to cell survival. Oncogene 26, 7049–7057 (2007). https://doi.org/10.1038/sj.onc.1210504

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210504

Keywords

This article is cited by

Search

Quick links