Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mutant p53: an oncogenic transcription factor

Abstract

Inactivation of tumor-suppressor genes is one of the key hallmarks of a tumor. Unlike other tumor-suppressor genes, p53 is inactivated by missense mutations in half of all human cancers. It has become increasingly clear that the resulting mutant p53 proteins do not represent only the mere loss of wild-type p53 tumor suppressor activity, but gain new oncogenic properties favoring the insurgence, the maintenance, the spreading and the chemoresistance of malignant tumors. The actual challenge is the fine deciphering of the molecular mechanisms underlying the gain of function of mutant p53 proteins. In this review, we will focus mainly on the transcriptional activity of mutant p53 proteins as one of the potential molecular mechanisms. To date, the related knowledge is still quite scarce and many of the raised questions of this review are yet unanswered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aas T, Borrensen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug J et al. (1996). Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2: 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Augustin M, Bamberger C, Paul D, Schmale H . (1998). Cloning and chromosomal mapping of the human p53 related KET gene to chromosome 3q27 and its murine homolog KET to mouse chromosome 16. Mamm Genome 9: 899–902.

    Article  CAS  PubMed  Google Scholar 

  • Beinz B, Zacut-Houri R, Givol D, Oren M . (1984). Analysis of the gene coding for the murine cellular tumor antigen p53. EMBO J 3: 2179–2183.

    Article  Google Scholar 

  • Berns EM, Foekens JA, Vossen R, Look MP, Devilee P, Henzen-Logmans SC et al. (2000). Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res 60: 2155–2162.

    CAS  PubMed  Google Scholar 

  • Blandino G, Levine AJ, Oren M . (1999). Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells on chemotherapy. Oncogene 18: 477–485.

    Article  CAS  PubMed  Google Scholar 

  • Blint E, Phillips AC, Kzolow S, Stewart CL, Vousden KH . (2002). Induction of p57KIP2 expression by p73β. Proc Natl Acad Sci USA 99: 3529–3534.

    Article  CAS  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–806.

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W . (2003). Ubiquitination, phosphorylation andacetylation: the molecular basis for p53 regulation. Curr Opin Cell 15: 164–171.

    Article  CAS  Google Scholar 

  • Buck MJ, Lieb JD . (2004). ChIP–chip considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83: 347–348.

    Article  CAS  Google Scholar 

  • Bullock A, Fersht AR . (2001). Rescuing the function of mutant p53. Nat Rev Cancer 1: 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Bushmann T, Minamoto T, Wagle N, Fuchs SY, Adler V, Mai M et al. (2000). Analysis of JNK, Mdm2, and p14(ARF) contribution to the regulation of mutant p53 stability. J Mol Biol 295: 1009–1021.

    Article  CAS  Google Scholar 

  • Cadwell C, Zambetti GP . (2001). The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277: 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Cho YJ, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA et al. (2002). DNA damage dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 9: 175–186.

    Article  CAS  PubMed  Google Scholar 

  • Deb S, Jackson CT, Subler MA, Martin DW . (1998). Modulation of cellular and viral promoters by mutant human p53 proteins found in tumors cells. J Virol 66: 6164–6170.

    Article  Google Scholar 

  • Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10: 191–202.

    Article  CAS  PubMed  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C . (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer D, Pati S, Zambetti G, Chu S, Tereski AK, Moore M et al. (1993). Gain of function mutations in p53. Nat Genet 4: 42–46.

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA . (1996). The p53-deficent mouse: a model for basic and applied cancer studies. Semin Cancer Biol 7: 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Fontemaggi G, Kela I, Amariglio N, Rechavi G, Krishnamurthy J, Strano S et al. (2002). Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J Biol Chem 277: 43359–43368.

    Article  CAS  PubMed  Google Scholar 

  • Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP . (1998). Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete c-terminal domain. Mol Cell Biol 18: 3735–3743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . (2001). A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Moll Cell Biol 21: 1874–1887.

    Article  CAS  Google Scholar 

  • Geisler S, Borrensen-Dale AL, Johnsen H, Aas T, Geisler J, Akslen LA et al. (2003). TP53 gene mutations predict the response to neoadjuvant treatment with 5-fluorouracil and mitomycin in locally advanced breast cancer. Clin Cancer Res 9: 5582–5588.

    CAS  PubMed  Google Scholar 

  • Gohler T, Jager S, Warnecke G, Yasuda H, Kim E, Deppert W . (2005). Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acid Res 33: 1087–1100.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gualberto A, Aldape K, Kozakiewicz K, Tlsy TD . (1998). An oncogenic form of p53 confers a dominant, gain of function phenotype that disrupts spindle checkpoint control. Proc Natl Acad Sci USA 95: 5166–5171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haley O, Michaloviz D, Oren M . (1990). Different tumor-derived p53 mutants exhibit distinct biological activities. Science 250: 113–116.

    Article  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  PubMed  Google Scholar 

  • Hoh J, Jin S, Parrado T, Edington J, Levine AJ, Ott J . (2002). The p53MH algorithm and its application in detecting p53-responsive genes. Proc Natl Acad Sci 13: 8467–8472.

    Article  CAS  Google Scholar 

  • Hollestein M, Sidransky D, Vogelstain B, Harris CC . (1991). P53 mutations in human cancers. Science 253: 49–53.

    Article  Google Scholar 

  • Hussain SP, Harris CC . (1998). Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res 58: 4023–4037.

    CAS  PubMed  Google Scholar 

  • Irwin M, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin Jr WG . (2003). Chemosensitivity linked to p73 function. Cancer Cell 3: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga Y, Jeang KT . (2002). Expression of mitotic spindle checkpoint protein hsMADl correlates with cellular proliferation and is activated by a gain-of-function p53 mutant. Cancer Res 62: 2618–2624.

    CAS  PubMed  Google Scholar 

  • Jayaraman L, Prives C . (1999). Covalent and noncovalent modifies of the p53 protein. Cell Mol Life Sci 55: 76–87.

    Article  CAS  PubMed  Google Scholar 

  • Jaks T, Remington L, Williams BO, Schmitt E, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  Google Scholar 

  • Joerger AC, Friedler A, Fersht A . (2005). Wild Type p53 Conformation Structural Consequences of p53 Mutations and Mechanisms of Mutant p53 Rescue. 25 Years of p53 Research. Springer: Dordrecht, pp 377–397.

    Google Scholar 

  • Kaelin Jr WG . (1999). The emerging p53 gene family. J Natl Cancer Inst 91: 594–598.

    Article  CAS  PubMed  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Kartasheva NN, Lenz-Bauer D, Hartmann Shafer H, Eliers M, Dobblestein M . (2003). Np73 can modulate the expression of various genes in a p53-independent fashion. Oncogene 22: 5686–5693.

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Deppert W . (2006). The versatile interactions of p53 with DNA: when flexibility serves specificity. Cell Death Differ 13: 855–859.

    Google Scholar 

  • Koga K, Deppert W . (2000). Identification of genomic DNA sequences bound by mutant p53 protein (Gly–Ser) in vivo. Oncogene 19: 4178–4183.

    Article  CAS  PubMed  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  PubMed  Google Scholar 

  • Lain S, Lane D . (2005). Novel p53-based Therapies: Strategies and Future Prospect, 25 Years of p53 Research. Springer: Dordrecht, pp 353–372.

    Google Scholar 

  • Lane DP, Crawford LV . (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature 278: 261–263.

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Lapi E, Iovino A, Fontemaggi G, Soliera AR, Iacovelli S, Sacchi A et al. (2006). S100A2 gene is a direct transcriptional target of p53 homologues during keratinocyte differentiation. Oncogene 25: 3628–3637.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Lee S, Das GC, Park US, Lee Y . (2000). Activation of the insuline-like growth factor II transcription by aflatoxin B1 induced p53 mutant 249 is caused by activation of transcription complexes; implications for a gain of function during the formation of hepatocellular carcinoma. Oncogene 19: 3717–3726.

    Article  CAS  PubMed  Google Scholar 

  • Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang J, Melino G . (2000). The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci 113: 1661–1670.

    Article  CAS  PubMed  Google Scholar 

  • Li R, Suthpin PD, Schwarz D, Matas D, Almong N, Wolkowicz R et al. (1998). Mutant p53 protein expression interferes with p53-independent apoptotic pathway. Oncogene 16: 3269–3277.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Teresky AK, Levine AJ . (1995). Two critical hydrofobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes pf human p53 mutants. Oncogene 10: 2387–2390.

    CAS  PubMed  Google Scholar 

  • Linzer DL, Levine AJ . (1979). Characterization of a 54 Kdalton cellular SV40 tumor antigen present in SV40 transformed cells and uninfected embryonally carcinoma cells. Cell 17: 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Cepero E, Evan G . (2004). Intrinsic tumour suppressor. Nature 432: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Ludes-Meyers JH, Dubler MA, Shivakumar V, Munoz RM, Jiang P, Bigger JE et al. (1996). Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol 16: 6009–6019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulies L, Sehgal BP . (1993). Modulation of the human interleukin-6 promoter (IL6) and transcription factor C/EBPâ (NF-IL6) activity by p53 species. J Biol Chem 268: 15096–15100.

    Article  CAS  PubMed  Google Scholar 

  • Marin MC, Jost CA, Brooks LA, Irwin MS, O'Nions J, Tidy JA et al. (2000). A common polymorphism act as an intrgenic modifier of mutant p53 behaviour. Nat Genet 25: 47–54.

    Article  CAS  PubMed  Google Scholar 

  • McKinney C, Prives C . (2005). Regulation of p53 DNA Binding. 25 Years of p53 Research. Springer: Dordrecht, pp 27–51.

    Book  Google Scholar 

  • Midgley C, Lane DP . (1997). p53 protein stability in tumors cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15: 1179–1189.

    Article  CAS  PubMed  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DL, Bradley A . (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398: 708–713.

    Article  CAS  PubMed  Google Scholar 

  • Mizuaray S, Yamanaka K, Kotani H . (2006). Mutant p53 induces the GEF-H1 oncogene, a guanidine nucleotide exchange factor H1 for RhoA, resulting in accelerated cell proliferation n tumor cells. Cancer Res 66: 6319–6326.

    Article  Google Scholar 

  • Moll UM, Riov G, Levine AJ . (1992). Two distinct mechanisms alter p53 in breast cancer mutation and nuclear exclusion. Proc Natl Acad Sci USA 89: 7262–7266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moll UM, Petrenko O . (2003). The Mdm2/p53 interaction. Mol Cancer Res 1: 1001–1008.

    CAS  PubMed  Google Scholar 

  • Monti O, Damalas A, Strano S, Blandino G . (2005). P73, p63 and Mutant p53: Members of Protein Complexes Floating in Cancer Cells. 25 Years of p53 Research. Springer: Dordrecht, pp 223–230.

    Google Scholar 

  • Nigro JM, Baker SJ, Prisinger AC, Jessup JM, Hostetter R, Cleary K et al. (1989). Mutations in the p53 gene occur in diverse human tumor types. Nature 342: 705–708.

    Article  CAS  PubMed  Google Scholar 

  • O'Farrel TJ, Ghosh P, Dobashi N, Sasaki CY, Longo DL . (2004). Comparison of the effect of mutant and wild-type p53 on global gene expression. Cancer Res 64: 8199–8207.

    Article  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. (2004). Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Hussain SP, Cardon DF, Hainaut P, Harris CC . (2002). The IARC TP53 database: new online mutation analysis and recommedations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Oren M, Levine AJ . (1983). Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen. Proc Natl Acad Sci USA 80: 56–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osada M, Ohba M, Kawhara C, Ishiocka C, Kanamaru N, Katoh H et al. (1998). Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 4: 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Prives C, Hall PA . (1999). The p53 pathway. J Pathol 187: 112–126.

    Article  CAS  PubMed  Google Scholar 

  • Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SE et al. (1994). Tumor incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9: 603–609.

    CAS  PubMed  Google Scholar 

  • Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M, Miles MF et al. (2005). Tumor-derived p53 mutants induce NF.KappaB2 gene expression. Mol Cell Biol 25: 10097–10110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M, Miles MF et al. (2004). Modulation of gene expression by tumor derived p53 mutants. Cancer Res 64: 7447–7454.

    Article  CAS  PubMed  Google Scholar 

  • Schmale H . (1997). A novel protein with strong homology to the tumor suppressor p53. Oncogene 15: 1363–1367.

    Article  CAS  PubMed  Google Scholar 

  • Senoo M, Seki M, Ohira M, Sugano S, Watanabe M, Inuzuka S et al. (1998). A second p53 related protein, p73L, with high homology to p73. Biochem Biophys Res Commun 248: 603–607.

    Article  CAS  PubMed  Google Scholar 

  • Sigal A, Rotter V . (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60: 6788–6793.

    CAS  PubMed  Google Scholar 

  • Soussi T . (2000). p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res 60: 1777–1788.

    CAS  PubMed  Google Scholar 

  • Soussi T . (2005). Analysis of p53 Gene Alterations in Cancer: A Critical View. 25 Years of p53 Research. Springer: Dordrecht, pp 255–262.

    Google Scholar 

  • Stiewe T, Stanelle J, Theseling CC, Pollmeier B, Beitzinger M, Putzer BM . (2003). Inactivation of retinoblastoma (RB) tumor suppressor by oncogenic isoforms of the p53 family member p73. J Biol Chem 278: 14230–14236.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Blandino G . (2003). p73-mediated chemosensitivity: a preferential target of oncogenic mutant p53. Cell Cycle 2: 348–349.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al. (2002). Physical interaction with human tumor derived p53 mutants inhibits p63 activities. J Biol Chem 277: 18817–18826.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli M et al. (2000). Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem 275: 29503–29512.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E et al. (2005). The transcriptional co-activator Yes associated protein drives p73 gene target specificity in response to DNA damage. Mol Cell 19: 426–429.

    Article  CAS  Google Scholar 

  • Subler M, Martin DW, Deb S . (1994). Activation of the human immunodeficiency virus type 1 long terminal repeat by transforming mutants of human p53. J Virol 68: 103–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunahara M, Ichimiya S, Nimura Y, Takada N, Sakiyama S, Sato Y et al. (1998). Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int J Oncol 13: 319–323.

    CAS  PubMed  Google Scholar 

  • Takahashi H, Ichimiya S, Nimura Y, Watanabe M, Furusato M, Wacui S et al. (1998). Mutation allelotyping, and transcription analyses of the p73 gene in prostatic carcinoma. Cancer Res 58: 2076–2077.

    CAS  PubMed  Google Scholar 

  • Tepper CG, Gregg JP, Shi XB, Vinall RL, Baron CA, Ryan PE et al. (2005). Profiling of gene expression change caused by p53 gain of function mutant alleles in prostate cancer cells. Prostate 65: 375–389.

    Article  CAS  PubMed  Google Scholar 

  • Trink B, Okami K, Wu L, Sriuganpong V, Jen J, Sidransky D . (1998). A new human p53 homologue. Nat Med 4: 747–748.

    Article  PubMed  Google Scholar 

  • Tsutsumi-Ishii Y, Todakoro K, Hanaoka F, Tsuchida N . (1995). Response of heat shock element within the human HSP70 promoter to mutated p53 genes. Cell Growth Differ 6: 1–8.

    CAS  PubMed  Google Scholar 

  • Weisz L, Zalcenstein A, Stamblosky P, Cohen Y, Goldfinger N, Oren M et al. (2004). Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res 64: 7447–7454.

    Article  Google Scholar 

  • Will K, Warnecke G, Wiesmuller L, Deppert W . (1998). Specific interaction of mutat p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing. Proc Natl Acad Sci USA 95: 13681–13686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Smith LT, Plass C, Hiang THM . (2006). ChIP–chip comes of age for genome wide functional analysis. Cancer Res 66: 6899–6902.

    Article  CAS  PubMed  Google Scholar 

  • Vousden HK, Lu X . (2002). Live or let die: the cell response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y . (2003). Regulation of p53 responses by post-translational modifications. Cell Death Differ 10: 400–403.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398: 714–718.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, McKeon F . (2000). p63 and p73: p53 mimics, menaces and more. Nat Rev Mol Cell Biol 1: 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J et al. (2000). p73 deficent mice have neurological, pherormonal and inflammatory defects but lack spontaneous tumours. Nature 404: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Zalcenstein A, Weisz L, Stambolski P, Bar J, Rotter V, Oren M . (2006). Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene 25: 359–369.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Association for Cancer Research (AIRC), Ministero della Sanità, MIUR-FIRB Italy, Italy-USA and the European Community (EC) ‘Active p53 and Mutant p53’ consortia. This publication reflects the authors' views and not necessarily those of the EC. The EC is not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Blandino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strano, S., Dell'Orso, S., Di Agostino, S. et al. Mutant p53: an oncogenic transcription factor. Oncogene 26, 2212–2219 (2007). https://doi.org/10.1038/sj.onc.1210296

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210296

Keywords

This article is cited by

Search

Quick links