Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ras effector pathways modulate scatter factor-stimulated NF-κB signaling and protection against DNA damage

Abstract

Scatter factor (SF) (hepatocyte growth factor) is a pleiotrophic cytokine that accumulates within tumors in vivo and protects tumor cells against cytotoxicity and apoptosis due to DNA damaging agents in vitro. Previous studies have established that SF-mediated cell protection involves antiapoptotic signaling from its receptor (c-Met) to PI3 kinase → c-Akt → Pak1 (p21-activated kinase -1) → NF-κB (nuclear factor-kappa B). Here, we found that Ras proteins (H-Ras and R-Ras) enhance SF-mediated activation of NF-κB and protection of DU-145 and MDCK (Madin–Darby canine kidney) cells against the topoisomerase IIα inhibitor adriamycin. Studies of Ras effector loop mutants and their downstream effectors suggest that Ras/PI3 kinase and Ras/Raf1 pathways contribute to SF stimulation of NF-κB signaling and cell protection. Further studies revealed that Raf1 positively regulates the ability of SF to stimulate NF-κB activity and cell protection. The ability of Raf1 to stimulate NF-κB activity was not due to the classical Raf1 → MEK1/2 → ERK1/2 pathway. However, we found that a MEK3/6 → p38 pathway contributes to SF-mediated activation of NF-κB. In contrast, RalA, a target of the Ras/RalGDS pathway negatively regulated the ability of SF to stimulate NF-κB activity and cell protection. Ras, Raf1 and RalA modulate SF stimulation of NF-κB activity, in part, by regulating IκB kinase (IKK)-β kinase activity. These findings suggest that Ras/Raf1/RalA pathways may converge to modulate NF-κB activation and SF-mediated survival signaling at the IKK complex and/or a kinase upstream of this complex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA . (1993). Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J 12: 339–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL et al. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48: 589–601.

    CAS  PubMed  Google Scholar 

  • Bardelli A, Longatti P, Albero D, Goruppi S, Schneider C, Ponzetto C et al. (1996). HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J 15: 6205–6212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR et al. (2000). Raf induces NF-kappaB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 97: 4615–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL, Chan AM-L, Kmiecik TE, Vande Woude GF et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251: 802–804.

    Article  CAS  PubMed  Google Scholar 

  • Bowers DC, Fan S, Walter K, Abounader R, Williams JA, Rosen EM et al. (2000). Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res 60: 4277–4283.

    CAS  PubMed  Google Scholar 

  • Camonis JH, White MA . (2005). Ral GTPases: corrupting the exocyst in cancer cells. Trends Cell Biol 15: 327–332. (Review).

    Article  CAS  PubMed  Google Scholar 

  • Cantor SB, Urano T, Feig LA . (1995). Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol 15: 4578–4584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HH, Benson DR, Schultz PG . (1993). Probing the structure and mechanism of Ras protein with an expanded genetic code. Science 259: 806–809.

    Article  CAS  PubMed  Google Scholar 

  • Cong LN, Chen H, Li Y, Zhou L, McGibbon MA, Taylor SI et al. (1997). Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 11: 1881–1890.

    Article  CAS  PubMed  Google Scholar 

  • Costantini C, Rossi F, Formaggio E, Bernardoni R, Cecconi D, Della-Bianca V . (2005). Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. J Mol Neurosci 25: 141–156.

    Article  CAS  PubMed  Google Scholar 

  • de Vos AM, Tong L, Milburn MV, Matias PM, Jancarik J, Noguchi S et al. (1988). Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science 239: 888–893.

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Raingeaud J, Barrett T, Wu I-H, Han J, Ulevitch RJ et al. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Gao M, Meng Q, Laterra JJ, Symons MH, Coniglio S et al. (2005). Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene 24: 1749–1766.

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Ma YX, Gao M, Yuan RQ, Meng Q, Goldberg ID et al. (2001). The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. Mol Cell Biol 21: 4968–4984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Ma YX, Wang J-A, Yuan R-Q, Meng Q, Laterra JJ et al. (2000). The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3′ kinase. Oncogene 19: 2212–2223.

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Wang J-A, Yuan R-Q, Rockwell S, Andres J, Zlatapolskiy A et al. (1998). Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene 17: 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald EM . (2000). Regulation of voltage-dependent calcium channels in rat sensory neurones involves a Ras-mitogen-activated protein kinase pathway. J Physiol 527: 433–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch SM, Francis H . (1994). Disruption of epithelial cell–matrix interactions induces apoptosis. J Cell Biol 124: 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Graziani A, Gramaglia D, dalla Zonca P, Comoglio PM . (1993). Hepatocyte growth factor/scatter factor stimulates the Ras-guanine nucleotide exchanger. J Biol Chem 268: 9165–9168.

    CAS  PubMed  Google Scholar 

  • Herrmann C . (2003). Ras-effector interactions: after one decade. Curr Opin Struct Biol 13: 122–129. (Review).

    Article  CAS  PubMed  Google Scholar 

  • Hofer F, Fields S, Schneider C, Martin GS . (1994). Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc Natl Acad Sci USA 91: 11089–11093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MC, Wang Y . (1998). IkappaB kinase-alpha and -beta genes are coexpressed in adult and embryonic tissues but localized to different human chromosomes. Gene 222: 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Fuchs A, Schnitt SJ, Yao Y, Joseph A, Lamszus K et al. (1997). Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer 79: 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Kraus MH, Yuasa Y, Aaronson SA . (1984). A position 12-activated H-ras oncogene in all HS578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc Natl Acad Sci USA 81: 5384–5388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin A, Minden A, Martinetto H, Claret F-X, Lange-Carter C, Mercurio F et al. (1995). Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268: 286–290.

    Article  CAS  PubMed  Google Scholar 

  • Luo JQ, Liu X, Frankel P, Rotunda T, Ramos M, Flom J et al. (1998). Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci USA 95: 3632–3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matteucci E, Modora S, Simone M, Desiderio MA . (2003). Hepatocyte growth factor induces apoptosis through the extrinsic pathway in hepatoma cells: favouring role of hypoxia-inducible factor-1 deficiency. Oncogene 22: 4062–4073.

    Article  CAS  PubMed  Google Scholar 

  • May MJ, D'Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S . (2000). Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 289: 1550–1554.

    Article  CAS  PubMed  Google Scholar 

  • McFarlin DR, Lindstrom MJ, Gould MN . (2003). Affinity with Raf is sufficient for Ras to efficiently induce rat mammary carcinomas. Carcinogenesis 24: 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Milburn MV, Tong L, deVos AM, Brunger A, Yamaizumi Z, Nishimura S et al. (1990). Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247: 939–945.

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki N, Ohba Y, Kobayashi S, Otsuka N, Graybiel AM, Tanaka S et al. (2000). Crk activation of JNK via C3G and R-Ras. J Biol Chem 275: 12667–12671.

    Article  CAS  PubMed  Google Scholar 

  • Mody N, Campbell DG, Morrice N, Peggie M, Cohen P . (2003). An analysis of the phosphorylation and activation of extracellular-signal-regulated protein kinase 5 (ERK5) by mitogen-activated protein kinase kinase 5 (MKK5) in vitro. Biochem J 372: 567–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moodie SA, Willumsen BM, Weber MJ, Wolfman A . (1993). Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260: 1658–1661.

    Article  CAS  PubMed  Google Scholar 

  • Murai H, Ikeda M, Kishida S, Ishida O, Okazaki-Kishida M, Matsuura Y et al. (1997). Characterization of Ral GDP dissociation stimulator-like (RGL) activities to regulate c-fos promoter and the GDP/GTP exchange of Ral. J Biol Chem 272: 10483–10490.

    Article  CAS  PubMed  Google Scholar 

  • Nick JA, Avdi NJ, Young SK, Lehman LA, McDonald PP, Frasch SC et al. (1999). Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest 103: 851–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oxford G, Owens CR, Titus BJ, Foreman TL, Herlevsen MC, Smith SC et al. (2005). RalA and RalB: antagonistic relatives in cancer cell migration. Cancer Res 65: 7111–7120.

    Article  CAS  PubMed  Google Scholar 

  • Peyssonnaux C, Provot S, Felder-Schmittbuhl MP, Calothy G, Eychene A . (2000). Induction of postmitotic neuroretina cell proliferation by distinct Ras downstream signaling pathways. Mol Cell Biol 20: 7068–7079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Anwar KN, Minhajuddin M, Bijli KM, Javaid K, True AL et al. (2004). cAMP targeting of p38 MAP kinase inhibits thrombin-induced NF-kappaB activation and ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol 287: L1017–L1024.

    Article  CAS  PubMed  Google Scholar 

  • Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ . (1996). MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16: 1247–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P et al. (1997). Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89: 457–467.

    Article  CAS  PubMed  Google Scholar 

  • Rosen EM, Lamszus K, Laterra J, Polverini PJ, Rubin JS, Goldberg ID . (1997). HGF/SF in angiogenesis. Ciba Found Symp 212: 215–226.

    CAS  PubMed  Google Scholar 

  • Shao H, Kadono-Okuda K, Finlin BS, Andres DA . (1999). Biochemical characterization of the Ras-related GTPases Rit and Rin. Arch Biochem Biophys 371: 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Shuto T, Xu H, Wang B, Han J, Kai H, Gu XX et al. (2001). Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha/beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci USA 98: 8774–8779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song KS, Seong JK, Chung KC, Lee WJ, Kim CH, Cho KN et al. (2003). Induction of MUC8 gene expression by interleukin-1 beta is mediated by a sequential ERK MAPK/RSK1/CREB cascade pathway in human airway epithelial cells. J Biol Chem 278: 34890–34896.

    Article  CAS  PubMed  Google Scholar 

  • Stewart S, Guan KL . (2000). The dominant-negative Ras mutant, N17Ras, can inhibit signaling independently of blocking Ras activation. J Biol Chem 275: 8854–8862.

    Article  CAS  PubMed  Google Scholar 

  • Stuckler D, Singhal J, Singhal SS, Yadav S, Awasthi YC, Awasthi S . (2005). RLIP76 transports vinorelbine and mediates drug resistance in non-small cell lung cancer. Cancer Res 65: 991–998.

    CAS  PubMed  Google Scholar 

  • Tulasne D, Paumelle R, Weidner KM, Vandenbunder B, Fafeur V . (1999). The multisubstrate docking site of the MET receptor is dispensable for MET-mediated RAS signaling and cell scattering. Mol Biol Cell 10: 551–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale N, Mawet J, Camonis J, Regazzi R, Bader MF, Chasserot-Golaz S . (2005). The small GTPase RalA controls exocytosis of large dense core secretory granules by interacting with ARF6-dependent phospholipase D1. J Biol Chem 280: 29921–29928.

    Article  CAS  PubMed  Google Scholar 

  • Vojtek AB, Hollenberg SM, Cooper JA . (1993). Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Voss M, Weernink PA, Haupenthal S, Moller U, Cool RH, Bauer B et al. (1999). Phospholipase D stimulation by receptor tyrosine kinases mediated by protein kinase C and a Ras/Ral signaling cascade. J Biol Chem 274: 34691–34698.

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J et al. (1997). Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem 272: 23668–23674.

    Article  CAS  PubMed  Google Scholar 

  • Webb CP, Van Aelst L, Wigler MH, Woude GF . (1998). Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci USA 95: 8773–8778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M et al. (1995). Multiple Ras functions can contribute to mammalian cell transformation. Cell 80: 533–541.

    Article  CAS  PubMed  Google Scholar 

  • Wohlgemuth S, Kiel C, Kramer A, Serrano L, Wittinghofer F, Herrmann C . (2005). Recognizing and defining true Ras binding domains I: biochemical analysis. J Mol Biol 348: 741–758.

    Article  CAS  PubMed  Google Scholar 

  • Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV . (1997). IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278: 866–869.

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Templeton DJ . (1994). Identification of 2 serine residues of MEK-1 that are differentially phosphorylated during activation by raf and MEK kinase. J Biol Chem 269: 19067–19073.

    CAS  PubMed  Google Scholar 

  • Yang JJ, Kang JS, Krauss RS . (1998). Ras signals to the cell cycle machinery via multiple pathways to induce anchorage-independent growth. Mol Cell Biol 18: 2586–2595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng CF, Guan KL . (1993). Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases. J Biol Chem 268: 23933–23939.

    CAS  PubMed  Google Scholar 

  • Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60: 1541–1545.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sources of support: This work is supported, in part, by United States Public Health Service Grants RO1-ES09169 (EMR) and RO1-NS43987 (JJL/EMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E M Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, S., Meng, Q., Laterra, J. et al. Ras effector pathways modulate scatter factor-stimulated NF-κB signaling and protection against DNA damage. Oncogene 26, 4774–4796 (2007). https://doi.org/10.1038/sj.onc.1210271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210271

Keywords

This article is cited by

Search

Quick links