Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mitochondrial DNA determines androgen dependence in prostate cancer cell lines

Abstract

Prostate cancer progresses from an androgen-dependent to androgen-independent stage after androgen ablation therapy. Mitochondrial DNA plays a role in cell death and metastatic competence. Further, heteroplasmic large-deletion mitochondrial DNA is very common in prostate cancer. To investigate the role of mitochondrial DNA in androgen dependence of prostate cancers, we tested the changes of normal and deleted mitochondrial DNA in accordance with the progression of prostate cancer. We demonstrated that the androgen-independent cell line C4-2, established by inoculation of the androgen-dependent LNCaP cell line into castrated mice, has a greatly reduced amount of normal mitochondrial DNA and an accumulation of large-deletion DNA. Strikingly, the depletion of mitochondrial DNA from androgen-dependent LNCaP resulted in a loss of androgen dependence. Reconstitution of normal mitochondrial DNA to the mitochondrial DNA-depleted clone restored androgen dependence. These results indicate that mitochondrial DNA determines androgen dependence of prostate cancer cell lines. Further, mitochondrial DNA-deficient cells formed tumors in castrated athymic mice, whereas LNCaP did not. The accumulation of large deletion and depletion of mitochondrial DNA may thus play a role in the development of androgen independence, leading to progression of prostate cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amuthan G, Biswas G, Zhang SY, Klein-Szanto A, Vijayasarathy C, Avadhani NG . (2001). EMBO J 20: 1910–1920.

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al. (1981). Nature 290: 457–465.

  • Arnould T, Vankoningsloo S, Renard P, Houbion A, Ninane N, Demazy C et al. (2002). EMBO J 21: 53–63.

  • Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, Zaidi M et al. (1999). EMBO J 18: 522–533.

  • Burgart LJ, Zheng J, Shu Q, Strickler JG, Shibata D . (1995). Am J Pathol 147: 1105–1111.

  • Catz SD, Johnson JL . (2001). Oncogene 20: 7342–7351.

  • Chen JZ, Gokden N, Greene GF, Mukunyadzi P, Kadlubar FF . (2002). Cancer Res 62: 6470–6474.

  • Culig Z, Klocker H, Eberle J, Kaspar F, Hobisch A, Cronauer MV et al. (1993). Prostate 22: 11–22.

  • Diamond DA, Barrack ER . (1984). J Urol 132: 821–827.

  • Graff JR, Konicek BW, McNulty AM, Wang Z, Houck K, Allen S et al. (2000). J Biol Chem 275: 24500–24505.

  • Higuchi M, Aggarwal BB, Yeh ET . (1997). J Clin Invest 99: 1751–1758.

  • Higuchi M, Manna KS, Sasaki R, Aggarwal BB . (2002). Antioxidants Redox signal 4: 945–955.

  • Hirano M, Silvestri G, Blake DM, Lombes A, Minetti C, Bonilla E et al. (1994). Neurology 44: 721–727.

  • Horton TM, Petros JA, Heddi A, Shoffner J, Kaufman AE, Graham Jr SD et al. (1996). Genes Chromosomes Cancer 15: 95–101.

  • Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ . (2001). Oncogene 20: 4188–4197.

  • Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. (2005). CA Cancer J Clin 55: 10–30.

  • Jeronimo C, Nomoto S, Caballero OL, Usadel H, Henrique R, Varzim G et al. (2001). Oncogene 20: 5195–5198.

  • Jessie BC, Sun CQ, Irons HR, Marshall FF, Wallace DC, Petros JA . (2001). Exp Gerontol 37: 169–174.

  • Kaukonen J, Juselius JK, Tiranti V, Kyttala A, Zeviani M, Comi GP et al. (2000). Science 289: 782–785.

  • Kawarada Y, Miura N, Sugiyama T . (1998). Jbiochem 123: 492–498.

  • Kimura K, Markowski M, Bowen C, Gelmann EP . (2001). Cancer Res 61: 5611–5618.

  • King MP, Attardi G . (1988). Cell 52: 811–819.

  • King MP, Attardi G . (1989). Science 246: 500–503.

  • Loeb LA . (2001). Cancer Res 61: 3230–3239.

  • McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT et al. (1992). Cancer Res 52: 6940–6944.

  • Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G . (1999). Science 286: 774–779.

  • Nishigaki Y, Marti R, Hirano M . (2004). Hum Mol Genet 13: 91–101.

  • Nishigaki Y, Marti R, Copeland WC, Hirano M . (2003). J Clin Invest 111: 1913–1921.

  • Ozawa T . (1997). Physiol Rev 77: 425–464.

  • Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD . (1999). Oncogene 18: 7389–7394.

  • Papadimitriou A, Comi GP, Hadjigeorgiou GM, Bordoni A, Sciacco M, Napoli L et al. (1998). Neurology 51: 1086–1092.

  • Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J et al. (2005). Proc Natl Acad Sci USA 102: 719–724.

  • Rasmussen AK, Chatterjee A, Rasmussen LJ, Singh KK . (2003). Nucleic Acids Res 31: 3909–3917.

  • Ripple MO, Henry WF, Rago RP, Wilding G . (1997). J Natl Cancer Inst 89: 40–48.

  • Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J et al. (2002). Carcinogenesis 23: 759–768.

  • Singh KK, Sigala B, Sikder HA, Schwimmer C . (2001). Nucleic Acids Res 29: 1381–1388.

  • Sommer A, Haendler B . (2003). Current Opinion in Drug Discovery & Development 6: 702–711.

  • Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M et al. (2001). Nature Genetics 28: 223–231.

  • Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C . (2001). Nat Genet 28: 211–212.

  • Wallace DC . (1992). Annu Rev Biochem 61: 1175–1212.

  • Washington MT, Rosenberg AH, Griffin K, Studier FW, Patel SS . (1996). J Biol Chem 271: 26825–26834.

  • Wu HC, Hsieh JT, Gleave ME, Brown NM, Pathak S, Chung LW . (1994). Int J Cancer 57: 406–412.

  • Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S . (1989). Nature 339: 309–311.

  • Zhang D, Mott JL, Chang SW, Denniger G, Feng Z, Zassenhaus HP . (2000). Genomics 69: 151–161.

Download references

Acknowledgements

We thank Drs Tetsuo Ashizawa and Gordon B Mills for careful review of the manuscript. We thank Dr Yasuhisa Nakayama for his help in establishing long range PCR. We thank Dr Yutaka Nishigaki for his help in establishing Southern blotting. This work was supported by Charlotte Geyer Foundation, Taiho Pharmaceutical Co., Ltd, Tobacco Settlement at State of Arkansas and NIH grant RO1 CA100846 to M Higuchi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Higuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, M., Kudo, T., Suzuki, S. et al. Mitochondrial DNA determines androgen dependence in prostate cancer cell lines. Oncogene 25, 1437–1445 (2006). https://doi.org/10.1038/sj.onc.1209190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209190

Keywords

This article is cited by

Search

Quick links