Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival

Abstract

Up to date clinical tests for predicting cancer chemotherapy response are not available and individual markers have shown little predictive value. We hypothesized that gene expression patterns attributable to chemotherapy-resistant cells can predict response and cancer prognosis. We contrasted the expression profiles of 13 different human tumor cell lines of gastric (EPG85–257), pancreatic (EPP85–181), colon (HT29) and breast (MCF7 and MDA-MB-231) origin and their counterparts resistant to the topoisomerase inhibitors daunorubicin, doxorubicin or mitoxantrone. We interrogated cDNA arrays with 43 000 cDNA clones (30 000 unique genes) to study the expression pattern of these cell lines. We divided gene expression profiles into two sets: we compared the expression patterns of the daunorubicin/doxorubicin-resistant cell lines and the mitoxantrone-resistant cell lines independently to the parental cell lines. For identifying predictive genes, the Prediction Analysis for Mircorarrays algorithm was used. The analysis revealed 79 genes best correlated with doxorubicin resistance and 70 genes with mitoxantrone resistance. In an independent classification experiment, we applied our model of resistance for predicting the sensitivity of 44 previously characterized breast cancer samples. The patient group characterized by the gene expression profile similar to those of doxorubicin-sensitive cell lines exhibited longer survival (49.7±26.1 months, n=21, P=0.034) than the resistant group (32.9±18.7 months, n=23). The application of gene expression signatures derived from doxorubicin-resistant and -sensitive cell lines allowed to predict effectively clinical survival after doxorubicin monotherapy. Our approach demonstrates the significance of in vitro experiments in the development of new strategies for cancer response prediction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson Jr J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO and Staudt LM . (2000). Nature, 403, 503–511.

  • Alonso O, Delgado L, Nunez M, Vargas C, Lopera J, Andruskevicius P, Sabini G, Gaudiano J, Muse IM and Roca R . (2002). Nucl. Med. Commun., 23, 765–771.

  • Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M, Metivier J, Booser D, Ibrahim N, Valero V, Royce M, Arun B, Whitman G, Ross J, Sneige N, Hortobagyi GN and Pusztai L . (2004). J. Clin. Oncol., 22, 2284–2293.

  • Bodo A, Bakos E, Szeri F, Varadi A and Sarkadi B . (2003). Toxicol. Lett., 140–141, 133–143.

  • Cailleau R, Young R, Olive M and Reeves Jr WJ . (1974). J. Natl. Cancer Inst., 53, 661–674.

  • Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, Mohsin S, Osborne CK, Chamness GC, Allred DC and O'Connell P . (2003). Lancet, 362, 362–369.

  • Chen TR, Drabkowski D, Hay RJ, Macy M and Peterson Jr W . (1987). Cancer Genet. Cytogenet., 27, 125–134.

  • Chollet P, Amat S, Cure H, de Latour M, Le Bouedec G, Mouret-Reynier MA, Ferriere JP, Achard JL, Dauplat J and Penault-Llorca F . (2002). Br. J. Cancer, 86, 1041–1046.

  • Dietel M, Arps H, Lage H and Niendorf A . (1990). Cancer Res., 50, 6100–6106.

  • Ein-Dor L, Kela I, Getz G, Givol D and Domany E . (2005). Bioinformatics, 21, 171–178.

  • Fairchild CR, Ivy SP, Kao-Shan CS, Whang-Peng J, Rosen N, Israel MA, Melera PW, Cowan KH and Goldsmith ME . (1987). Cancer Res., 47, 5141–5148.

  • Fisher TC, Milner AE, Gregory CD, Jackman AL, Aherne GW, Hartley JA, Dive C and Hickman JA . (1993). Cancer Res., 53, 3321–3326.

  • Goldstein LJ, Galski H, Fojo A, Willingham M, Lai SL, Gazdar A, Pirker R, Green A, Crist W and Brodeur GM . (1989). J. Natl. Cancer Inst., 81, 116–124.

  • Gottesman MM, Fojo T and Bates SE . (2002). Nat. Rev. Cancer, 2, 48–58.

  • Kang HC, Kim IJ, Park JH, Shin Y, Ku JL, Jung MS, Yoo BC, Kim HK and Park JG . (2004). Clin. Cancer Res., 10, 272–284.

  • Kudoh K, Ramanna M, Ravatn R, Elkahloun AG, Bittner ML, Meltzer PS, Trent JM, Dalton WS and Chin KV . (2000). Cancer Res., 60, 4161–4166.

  • Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, McNeese MD, Buzdar AU, Hortobagyi GN and Singletary SE . (1999). J. Clin. Oncol., 17, 460–469.

  • Lage H and Dietel M . (2002). J. Cancer Res. Clin. Oncol., 128, 349–357.

  • Lage H, Jordan A, Scholz R and Dietel M . (2000). Int. J. Hyperthermia, 16, 291–303.

  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE and Jacks T . (1994). Science, 266, 807–810.

  • Nooter K, Westerman AM, Flens MJ, Zaman GJ, Scheper RJ, van Wingerden KE, Burger H, Oostrum R, Boersma T and Sonneveld P . (1995). Clin. Cancer Res., 1, 1301–1310.

  • Robert J and Jarry C . (2003). J. Med. Chem., 46, 4805–4817.

  • Roehm NW, Rodgers GH, Hatfield SM and Glasebrook AL . (1991). J. Immunol. Methods, 142, 257–265.

  • Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E and Lage H . (1999). J. Natl. Cancer Inst., 91, 429–433.

  • Sinha P, Hutter G, Kottgen E, Dietel M, Schadendorf D and Lage H . (1999). Electrophoresis, 20, 2961–2969.

  • Sciuto R, Pasqualoni R, Bergomi S, Petrilli G, Vici P, Belli F, Botti C, Mottolese M and Maini CL . (2002). J. Nucl. Med., 43, 745–751.

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL and Botstein D . (2003). Proc. Natl. Acad. Sci. USA, 100, 8418–8423.

  • Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL and Liu ET . (2003). Proc. Natl. Acad. Sci. USA, 100, 10393–10398.

  • Soule HD, Vazguez J, Long A, Albert S and Brennan M . (1973). J. Natl. Cancer Inst., 51, 1409–1416.

  • Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U, Lee JK, Reinhold WO, Weinstein JN, Mesirov JP, Lander ES and Golub TR . (2001). Proc. Natl. Acad. Sci. USA, 98, 10787–10792.

  • Sturn A, Quackenbush J and Trajanoski Z . (2002). Bioinformatics, 18, 207–208.

  • Suganuma K, Kubota T, Saikawa Y, Abe S, Otani Y, Furukawa T, Kumai K, Hasegawa H, Watanabe M, Kitajima M, Nakayama H and Okabe H . (2003). Cancer Sci., 94, 355–359.

  • Tan PK, Downey TJ, Spitznagel Jr EL, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM and Cam MC . (2003). Nucleic Acids Res., 31, 5676–5684.

  • Thomas H and Coley HM . (2003). Cancer Control, 10, 159–165.

  • Troester MA, Hoadley KA, Sorlie T, Herbert BS, Borresen-Dale AL, Lonning PE, Shay JW, Kaufmann WK and Perou CM . (2004). Cancer Res., 64, 4218–4226.

  • Turton NJ, Judah DJ, Riley J, Davies R, Lipson D, Styles JA, Smith AG and Gant TW . (2001). Oncogene, 20, 1300–1306.

  • Tusher VG, Tibshirani R and Chu G . (2001). Proc. Natl. Acad. Sci. USA, 98, 5116–5121.

  • van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Bernards R and Friend SH . (2003). Breast Cancer Res., 5, 57–58.

  • Zembutsu H, Ohnishi Y, Tsunoda T, Furukawa Y, Katagiri T and Ueyama Y . (2002). Cancer Res., 62, 518–527.

Download references

Acknowledgements

Violeta Serra and Balazs Györffy are supported by Marie Curie fellowships (HPMD-CT-2000-00001). Violeta Serra's work at Stanford University was supported by the Berliner Krebsgesellschaft. We would like to thank Mrs Schütze, Mrs Schaefer and Mrs Pacyna-Gengelbach for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Györffy.

Additional information

Supplementary Information accompanies the paper on Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Györffy, B., Serra, V., Jürchott, K. et al. Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. Oncogene 24, 7542–7551 (2005). https://doi.org/10.1038/sj.onc.1208908

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208908

Keywords

This article is cited by

Search

Quick links