Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Body weight is regulated by the brain: a link between feeding and emotion

Abstract

Regulated energy homeostasis is fundamental for maintaining life. Unfortunately, this critical process is affected in a high number of mentally ill patients. Eating disorders such as anorexia nervosa are prevalent in modern societies. Impaired appetite and weight loss are common in patients with depression. In addition, the use of neuroleptics frequently produces obesity and diabetes mellitus. However, the neural mechanisms underlying the pathophysiology of these behavioral and metabolic conditions are largely unknown. In this review, we first concentrate on the established brain machinery of food intake and body weight, especially on the melanocortin and neuropeptide Y (NPY) systems as illustration. These systems play a critical role in receiving and processing critical peripheral metabolic cues such as leptin and ghrelin. It is also notable that both systems modulate emotion and motivated behavior as well. Secondly, we discuss the significance and potential promise of multidisciplinary molecular and neuroanatomic techniques that will likely increase the understanding of brain circuitries coordinating energy homeostasis and emotion. Finally, we introduce several lines of evidence suggesting a link between the melanocortin/NPY systems and several neurotransmitter systems on which many of the psychotropic agents exert their influence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Friedman JM . Obesity in the new millennium. Nature 2000; 404: 632–634.

    Article  CAS  PubMed  Google Scholar 

  2. McIntyre RS, Mancini DA, Basile VS . Mechanisms of antipsychotic-induced weight gain. J Clin Psychiatry 2001; 62(Suppl 23): 23–29.

    CAS  PubMed  Google Scholar 

  3. Meyer JM . Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry 2001; 62(Suppl 27): 27–34.

    CAS  PubMed  Google Scholar 

  4. Wirshing DA . Adverse effects of atypical antipsychotics. J Clin Psychiatry 2001; 62(Suppl 21): 7–10.

    CAS  PubMed  Google Scholar 

  5. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  PubMed  Google Scholar 

  6. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K . Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402: 656–660.

    Article  CAS  PubMed  Google Scholar 

  7. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K et al. A role for ghrelin in the central regulation of feeding. Nature 2001; 409: 194–198.

    Article  CAS  PubMed  Google Scholar 

  8. Inui A . Eating behavior in anorexia nervosa—an excess of both orexigenic and anorexigenic signalling? Mol Psychiatry 2001; 6: 620–624.

    Article  CAS  PubMed  Google Scholar 

  9. Fetissov SO, Hallman J, Oreland L, Af Klinteberg B, Grenback E, Hulting AL et al. Autoantibodies against alpha-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc Natl Acad Sci USA 2002; 99: 17155–17160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tanaka M, Naruo T, Muranaga T, Yasuhara D, Shiiya T, Nakazato M et al. Increased fasting plasma ghrelin levels in patients with bulimia nervosa. Eur J Endocrinol 2002; 146: R1–R3.

    Article  CAS  PubMed  Google Scholar 

  11. Branson R, Potoczna N, Kral JG, Lentes KU, Hoehe MR, Horber FF . Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. N Engl J Med 2003; 348: 1096–1103.

    Article  CAS  PubMed  Google Scholar 

  12. Alvaro JD, Tatro JB, Quillan JM, Fogliano M, Eisenhard M, Lerner MR et al. Morphine down-regulates melanocortin-4 receptor expression in brain regions that mediate opiate addiction. Mol Pharmacol 1996; 50: 583–591.

    CAS  PubMed  Google Scholar 

  13. Alvaro JD, Tatro JB, Duman RS . Melanocortins and opiate addiction. Life Sci 1997; 61: 1–9.

    Article  CAS  PubMed  Google Scholar 

  14. Alvaro JD, Taylor JR, Duman RS . Molecular and behavioral interactions between central melanocortins and cocaine. Pharmacol Exp Ther 2003; 304: 391–399.

    Article  CAS  Google Scholar 

  15. Barsh GS, Schwartz MW . Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 2002; 3: 589–600.

    Article  CAS  PubMed  Google Scholar 

  16. Elmquist JK, Elias CF, Saper CB . From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 1999; 22: 221–232.

    Article  CAS  PubMed  Google Scholar 

  17. Friedman JM, Halaas JL . Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763–770.

    Article  CAS  PubMed  Google Scholar 

  18. Grill HJ, Kaplan JM . The neuroanatomical axis for control of energy balance. Front Neuroendocrinol 2002; 23: 2–40.

    Article  CAS  PubMed  Google Scholar 

  19. O'Rahilly S, Farooqi IS, Yeo GS, Challis BG . Minireview: human obesity—lessons from monogenic disorders. Endocrinology 2003; 144: 3757–3764.

    Article  CAS  PubMed  Google Scholar 

  20. Saper CB, Chou TC, Elmquist JK . The need to feed: homeostatic and hedonic control of eating. Neuron 2002; 36: 199–211.

    Article  CAS  PubMed  Google Scholar 

  21. Sawchenko PE . Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in. J Comp Neurol 1998; 402: 435–441.

    Article  CAS  PubMed  Google Scholar 

  22. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404: 661–671.

    Article  CAS  PubMed  Google Scholar 

  23. Spiegelman BM, Flier JS . Obesity and the regulation of energy balance. Cell 2001; 104: 531–543.

    Article  CAS  PubMed  Google Scholar 

  24. van den Pol AN . Weighing the role of hypothalamic feeding neurotransmitters. Neuron 2003; 40: 1059–1061.

    Article  CAS  PubMed  Google Scholar 

  25. Woods SC, Seeley RJ, Porte Jr D, Schwartz MW . Signals that regulate food intake and energy homeostasis. Science 1998; 280: 1378–1383.

    Article  CAS  PubMed  Google Scholar 

  26. Zigman JM, Elmquist JK . Minireview: From anorexia to obesity—the yin and yang of body weight control. Endocrinology 2003; 144: 3749–3756.

    Article  CAS  PubMed  Google Scholar 

  27. Bramwell B . Intracranial Tumors. Edinburgh: Pentland, 1888.

    Google Scholar 

  28. Frölich A . Ein fall von tumor der hypophysis cerebri ohne akromegalie. Wien Kin Rundsch 1901; 15: 883–886.

    Google Scholar 

  29. Aschner B . Uber die function der hypophyse. Pflügers Arch Physiol 1912; 146: 1–146.

    Article  Google Scholar 

  30. Hetherington AW, Ranson SW . Hypothalamic lesions and adiposity in the rat. Anat Rec 1940; 78: 149–172.

    Article  Google Scholar 

  31. Anand BK, Brobeck JR . Localization of a ‘feeding center’ in the hypothalamus of the rat. Proc Soc Exp Biol Med 1951; 77: 323–324.

    Article  CAS  PubMed  Google Scholar 

  32. Gold RM . Hypothalamic obesity: the myth of the ventromedial nucleus. Science 1973; 182: 488–490.

    Article  CAS  PubMed  Google Scholar 

  33. Roselli-Rehfuss L, Mountjoy KG, Robbins LS, Mortrud MT, Low MJ, Tatro JB et al. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci USA 1993; 90: 8856–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Magenis RE, Smith L, Nadeau JH, Johnson KR, Mountjoy KG, Cone RD . Mapping of the ACTH, MSH, and neural (MC3 and MC4) melanocortin receptors in the mouse and human. Mamm Genome 1994; 5: 503–508.

    Article  CAS  PubMed  Google Scholar 

  35. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD . Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 1994; 8: 1298–1308.

    CAS  PubMed  Google Scholar 

  36. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–908.

    Article  CAS  PubMed  Google Scholar 

  37. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD . A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998; 18: 213–215.

    Article  CAS  PubMed  Google Scholar 

  38. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341: 879–884.

    Article  CAS  PubMed  Google Scholar 

  39. Ozata M, Ozdemir IC, Licinio J . Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 1999; 84: 3686–3695.

    Article  CAS  PubMed  Google Scholar 

  40. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O'Kirwan F et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA 2004; 101: 4531–4536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E et al. Role of leptin in the neuroendocrine response to fasting. Nature 1996; 382: 250–252.

    Article  CAS  PubMed  Google Scholar 

  42. Legradi G, Emerson CH, Ahima RS, Flier JS, Lechan RM . Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology 1997; 138: 2569–2576.

    Article  CAS  PubMed  Google Scholar 

  43. Ahima RS, Prabakaran D, Flier JS . Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest 1998; 101: 1020–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo F, Bakal K, Minokoshi Y, Hollenberg AN . Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology 2004; 145: 2221–2227.

    Article  CAS  PubMed  Google Scholar 

  45. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P . Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 1995; 269: 546–549.

    Article  CAS  PubMed  Google Scholar 

  46. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543–546.

    Article  CAS  PubMed  Google Scholar 

  47. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269: 540–543.

    Article  CAS  PubMed  Google Scholar 

  48. Chehab FF, Lim ME, Lu R . Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 1996; 12: 318–320.

    Article  CAS  PubMed  Google Scholar 

  49. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS . The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest 2003; 111: 1409–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83: 1263–1271.

    Article  CAS  PubMed  Google Scholar 

  51. Tartaglia LA . The leptin receptor. J Biol Chem 1997; 272: 6093–6096.

    Article  CAS  PubMed  Google Scholar 

  52. Vaisse C, Halaas JL, Horvath CM, Darnell Jr JE, Stoffel M, Friedman JM . Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996; 14: 95–97.

    Article  CAS  PubMed  Google Scholar 

  53. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996; 84: 491–495.

    Article  CAS  PubMed  Google Scholar 

  54. Chua Jr SC, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996; 271: 994–996.

    Article  CAS  PubMed  Google Scholar 

  55. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996; 379: 632–635.

    Article  CAS  PubMed  Google Scholar 

  56. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398–401.

    Article  CAS  PubMed  Google Scholar 

  57. Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci USA 1997; 94: 7001–7005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB . Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 1998; 395: 535–547.

    Article  CAS  PubMed  Google Scholar 

  59. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P . Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett 1996; 387: 113–116.

    Article  CAS  PubMed  Google Scholar 

  60. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG . Identification of targets of leptin action in rat hypothalamus. J Clin Invest 1996; 98: 1101–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Couce ME, Burguera B, Parisi JE, Jensen MD, Lloyd RV . Localization of leptin receptor in the human brain. Neuroendocrinology 1997; 66: 145–150.

    Article  CAS  PubMed  Google Scholar 

  62. Baskin DG, Breininger JF, Bonigut S, Miller MA . Leptin binding in the arcuate nucleus is increased during fasting. Brain Res 1999; 828: 154–158.

    Article  CAS  PubMed  Google Scholar 

  63. Elmquist JK, Ahima RS, Maratos-Flier E, Flier JS, Saper CB . Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology 1997; 138: 839–842.

    Article  CAS  PubMed  Google Scholar 

  64. Elmquist JK, Ahima RS, Elias CF, Flier JS, Saper CB . Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc Natl Acad Sci USA 1998; 95: 741–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 1998; 21: 1375–1385.

    Article  CAS  PubMed  Google Scholar 

  66. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 1999; 23: 775–786.

    Article  CAS  PubMed  Google Scholar 

  67. Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS . The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 1999; 274: 30059–30065.

    Article  CAS  PubMed  Google Scholar 

  68. Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML . Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 1997; 390: 521–525.

    Article  CAS  PubMed  Google Scholar 

  69. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001; 411: 480–484.

    Article  CAS  PubMed  Google Scholar 

  70. Eberle AN . Proopiomelanocortin and the melanocortin peptides. In: Cone RD (ed). The Melanocortin Receptors. Humana Press: New Jersey, 2000, pp 3–67.

    Google Scholar 

  71. Broberger C, De Lecea L, Sutcliffe JG, Hokfelt T . Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol 1998; 402: 460–474.

    Article  CAS  PubMed  Google Scholar 

  72. Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 1998; 402: 442–459.

    Article  CAS  PubMed  Google Scholar 

  73. Cheung CC, Clifton DK, Steiner RA . Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 1997; 138: 4489–4492.

    Article  CAS  PubMed  Google Scholar 

  74. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 1997; 46: 2119–2123.

    Article  CAS  PubMed  Google Scholar 

  75. Thornton JE, Cheung CC, Clifton DK, Steiner RA . Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 1997; 138: 5063–5066.

    Article  CAS  PubMed  Google Scholar 

  76. Mizuno TM, Kleopoulos SP, Bergen HT, Roberts JL, Priest CA, Mobbs CV . Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 1998; 47: 294–297.

    Article  CAS  PubMed  Google Scholar 

  77. Cone RD . The melanocortin-4 receptor. In: Cone RD (ed). The Melanocortin Receptors. Humana Press: New Jersey, 2000, pp 405–447.

    Chapter  Google Scholar 

  78. O'Rahilly S, Yeo GS, Farooqi IS . Melanocortin receptors weigh in. Nat Med 2004; 10: 351–352.

    Article  CAS  PubMed  Google Scholar 

  79. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK . Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 2003; 457: 213–235.

    Article  CAS  PubMed  Google Scholar 

  80. Liu H, Kishi T, Roseberry AG, Cai X, Lee CE, Montez JM et al. Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J Neurosci 2003; 23: 7143–7154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131–141.

    Article  CAS  PubMed  Google Scholar 

  82. Vaisse C, Clement K, Guy-Grand B, Froguel P . A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20: 113–114.

    Article  CAS  PubMed  Google Scholar 

  83. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O'Rahilly S . A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 1998; 20: 111–112.

    Article  CAS  PubMed  Google Scholar 

  84. Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 2000; 106: 271–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P . Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 2000; 106: 253–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S . Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348: 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  87. Lubrano-Berthelier C, Durand E, Dubern B, Shapiro A, Dazin P, Weill J et al. Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum Mol Genet 2003; 12: 145–153.

    Article  CAS  PubMed  Google Scholar 

  88. Yeo GS, Lank EJ, Farooqi IS, Keogh J, Challis BG, O'Rahilly S . Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet 2003; 12: 561–574.

    Article  CAS  PubMed  Google Scholar 

  89. Barsh GS, Farooqi IS, O'Rahilly S . Genetics of body-weight regulation. Nature 2000; 404: 644–651.

    Article  CAS  PubMed  Google Scholar 

  90. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A . Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998; 19: 155–157.

    Article  CAS  PubMed  Google Scholar 

  91. Krude H, Biebermann H, Gruters A . Mutations in the human proopiomelanocortin gene. Ann NY Acad Sci 2003; 994: 233–239.

    Article  CAS  PubMed  Google Scholar 

  92. Shutter JR, Graham M, Kinsey AC, Scully S, Luthy R, Stark KL . Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev 1997; 11: 593–602.

    Article  CAS  PubMed  Google Scholar 

  93. Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL . Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet 1997; 17: 273–274.

    Article  CAS  PubMed  Google Scholar 

  94. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278: 135–138.

    Article  CAS  PubMed  Google Scholar 

  95. Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T . The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 1998; 95: 15043–15048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Haskell-Luevano C, Chen P, Li C, Chang K, Smith MS, Cameron JL et al. Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the rat. Endocrinology 1999; 140: 1408–1415.

    Article  CAS  PubMed  Google Scholar 

  97. Mizuno TM, Mobbs CV . Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology 1999; 140: 814–817.

    Article  CAS  PubMed  Google Scholar 

  98. Hahn TM, Breininger JF, Baskin DG, Schwartz MW . Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998; 1: 271–272.

    Article  CAS  PubMed  Google Scholar 

  99. Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G et al. Melanocortin receptors in leptin effects. Nature 1997; 390: 349.

    Article  CAS  PubMed  Google Scholar 

  100. Scarpace PJ, Matheny M, Pollock BH, Tumer N . Leptin increases uncoupling protein expression and energy expenditure. Am J Physiol 1997; 273: E226–E230.

    CAS  PubMed  Google Scholar 

  101. Kotz CM, Briggs JE, Pomonis JD, Grace MK, Levine AS, Billington CJ . Neural site of leptin influence on neuropeptide Y signaling pathways altering feeding and uncoupling protein. Am J Physiol 1998; 275: R478–R484.

    CAS  PubMed  Google Scholar 

  102. Satoh N, Ogawa Y, Katsuura G, Numata Y, Masuzaki H, Yoshimasa Y et al. Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci Lett 1998; 249: 107–110.

    Article  CAS  PubMed  Google Scholar 

  103. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 2004; 42: 983–991.

    Article  CAS  PubMed  Google Scholar 

  104. Boston BA, Blaydon KM, Varnerin J, Cone RD . Independent and additive effects of central POMC and leptin pathways on murine obesity. Science 1997; 278: 1641–1644.

    Article  CAS  PubMed  Google Scholar 

  105. Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 1999; 21: 119–122.

    Article  CAS  PubMed  Google Scholar 

  106. Watson SJ, Akil H . The presence of two alpha-MSH positive cell groups in rat hypothalamus. Eur J Pharmacol 1979; 58: 101–103.

    Article  CAS  PubMed  Google Scholar 

  107. Bagnol D, Lu XY, Kaelin CB, Day HE, Ollmann M, Gantz I et al. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J Neurosci 1999; 19: RC26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Giraudo SQ, Billington CJ, Levine AS . Feeding effects of hypothalamic injection of melanocortin 4 receptor ligands. Brain Res 1998; 809: 302–306.

    Article  CAS  PubMed  Google Scholar 

  109. Wirth MM, Olszewski PK, Yu C, Levine AS, Giraudo SQ . Paraventricular hypothalamic alpha-melanocyte-stimulating hormone and MTII reduce feeding without causing aversive effects. Peptides 2001; 22: 129–134.

    Article  CAS  PubMed  Google Scholar 

  110. Kim EM, O'Hare E, Grace MK, Welch CC, Billington CJ, Levine AS . ARC POMC mRNA and PVN alpha-MSH are lower in obese relative to lean zucker rats. Brain Res 2000; 862: 11–16.

    Article  CAS  PubMed  Google Scholar 

  111. Swanson LW, Sawchenko PE . Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 1983; 6: 269–324.

    Article  CAS  PubMed  Google Scholar 

  112. Sawchenko PE, Brown ER, Chan RK, Ericsson A, Li HY, Roland BL et al. The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog Brain Res 1996; 107: 201–222.

    Article  CAS  PubMed  Google Scholar 

  113. Saper CB . Central autonomic system. In: Paxinos G (ed). The Rat Nervous System, 3rd edn. Academic Press: San Diego, 2004, pp 761–796.

    Chapter  Google Scholar 

  114. Lu XY, Barsh GS, Akil H, Watson SJ . Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. J Neurosci 2003; 23: 7863–7872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Harris M, Aschkenasi C, Elias CF, Chandrankunnel A, Nillni EA, Bjoorbaek C et al. Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling. J Clin Invest 2001; 107: 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fekete C, Legradi G, Mihaly E, Huang QH, Tatro JB, Rand WM et al. alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci 2000; 20: 1550–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fekete C, Marks DL, Sarkar S, Emerson CH, Rand WM, Cone RD et al. Effect of Agouti-related protein in regulation of the hypothalamic–pituitary–thyroid axis in the melanocortin 4 receptor knockout mouse. Endocrinology 2004; 145: 4816–4821.

    Article  CAS  PubMed  Google Scholar 

  118. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 1992; 319: 218–245.

    Article  CAS  PubMed  Google Scholar 

  119. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996; 380: 243–247.

    Article  CAS  PubMed  Google Scholar 

  120. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E . Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998; 396: 670–674.

    Article  CAS  PubMed  Google Scholar 

  121. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92: 573–585.

    Article  CAS  PubMed  Google Scholar 

  122. Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S et al. The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat. Eur J Neurosci 2000; 12: 1194–1216.

    Article  CAS  PubMed  Google Scholar 

  123. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 2001; 435: 6–25.

    Article  CAS  PubMed  Google Scholar 

  124. Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS et al. Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc Natl Acad Sci USA 2001; 98: 7564–7569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Saito Y, Cheng M, Leslie FM, Civelli O . Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 2001; 435: 26–40.

    Article  CAS  PubMed  Google Scholar 

  126. Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 2001; 107: 379–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Segal-Lieberman G, Bradley RL, Kokkotou E, Carlson M, Trombly DJ, Wang X et al. Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype. Proc Natl Acad Sci USA 2003; 100: 10085–10090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999; 98: 437–451.

    Article  CAS  PubMed  Google Scholar 

  129. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98: 365–376.

    Article  CAS  PubMed  Google Scholar 

  130. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E . Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000; 355: 39–40.

    Article  CAS  PubMed  Google Scholar 

  131. Mignot E, Taheri S, Nishino S . Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat Neurosci 2002; 5(Suppl): 1071–1075.

    Article  CAS  PubMed  Google Scholar 

  132. Saper CB, Chou TC, Scammell TE . The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 2001; 24: 726–731.

    Article  CAS  PubMed  Google Scholar 

  133. Sakurai T . Roles of orexins in regulation of feeding and wakefulness. Neuroreport 2002; 13: 987–995.

    Article  CAS  PubMed  Google Scholar 

  134. van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK . Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 2004; 42: 635–652.

    Article  CAS  PubMed  Google Scholar 

  135. Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD . Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 1999; 24: 155–163.

    Article  CAS  PubMed  Google Scholar 

  136. King BM, Rollins BL, Stines SG, Cassis SA, McGuire HB, Lagarde ML . Sex differences in body weight gains following amygdaloid lesions in rats. Am J Physiol 1999; 277: R975–R980.

    CAS  PubMed  Google Scholar 

  137. Kask A, Schioth HB . Tonic inhibition of food intake during inactive phase is reversed by the injection of the melanocortin receptor antagonist into the paraventricular nucleus of the hypothalamus and central amygdala of the rat. Brain Res 2000; 887: 460–464.

    Article  CAS  PubMed  Google Scholar 

  138. Fan W, Dinulescu DM, Butler AA, Zhou J, Marks DL, Cone RD . The central melanocortin system can directly regulate serum insulin levels. Endocrinology 2000; 141: 3072–3079.

    Article  CAS  PubMed  Google Scholar 

  139. Obici S, Feng Z, Tan J, Liu L, Karkanias G, Rossetti L . Central melanocortin receptors regulate insulin action. J Clin Invest 2001; 108: 1079–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Obici S, Zhang BB, Karkanias G, Rossetti L . Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 2002; 8: 1376–1382.

    Article  CAS  PubMed  Google Scholar 

  141. Elmquist JK, Marcus JN . Rethinking the central causes of diabetes. Nat Med 2003; 9: 645–647.

    Article  CAS  PubMed  Google Scholar 

  142. Chamberlin NL, Du B, de Lacalle S, Saper CB . Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 1998; 793: 169–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kesterson RA . The melanocortin-3 receptor. In: Cone RD (ed). The Melanocortin Receptors. Humana Press: New Jersey, 2000, pp 385–403.

    Google Scholar 

  144. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141: 3518–3521.

    Article  CAS  PubMed  Google Scholar 

  145. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000; 26: 97–102.

    Article  CAS  PubMed  Google Scholar 

  146. Blomqvist AG, Herzog H . Y-receptor subtypes—how many more? Trends Neurosci 1997; 20: 294–298.

    Article  CAS  PubMed  Google Scholar 

  147. Hökfelt T, Broberger C, Zhang X, Diez M, Kopp J, Xu Z et al. Neuropeptide Y: some viewpoints on a multifaceted peptide in the normal and diseased nervous system. Brain Res Brain Res Rev 1998; 26: 154–166.

    Article  PubMed  Google Scholar 

  148. Inui A . Neuropeptide Y feeding receptors: are multiple subtypes involved? Trends Pharmacol Sci 1999; 20: 43–46.

    Article  CAS  PubMed  Google Scholar 

  149. Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR et al. Neuropeptide Y distribution in the rat brain. Science 1983; 221: 877–879.

    Article  CAS  PubMed  Google Scholar 

  150. Chronwall BM, DiMaggio DA, Massari VJ, Pickel VM, Ruggiero DA, O'Donohue TL . The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience 1985; 15: 1159–1181.

    Article  CAS  PubMed  Google Scholar 

  151. Eva C, Keinanen K, Monyer H, Seeburg P, Sprengel R . Molecular cloning of a novel G protein-coupled receptor that may belong to the neuropeptide receptor family. FEBS Lett 1990; 271: 81–84.

    Article  CAS  PubMed  Google Scholar 

  152. Kanatani A, Mashiko S, Murai N, Sugimoto N, Ito J, Fukuroda T et al. Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice. Endocrinology 2000; 141: 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  153. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002; 418: 650–654.

    Article  CAS  PubMed  Google Scholar 

  154. Sainsbury A, Schwarzer C, Couzens M, Fetissov S, Furtinger S, Jenkins A et al. Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc Natl Acad Sci USA 2002; 99: 8938–8943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gerald C, Walker MW, Criscione L, Gustafson EL, Batzl-Hartmann C, Smith KE et al. A receptor subtype involved in neuropeptide-Y-induced food intake. Nature 1996; 382: 168–171.

    Article  CAS  PubMed  Google Scholar 

  156. Yamanaka A, Kunii K, Nambu T, Tsujino N, Sakai A, Matsuzaki I et al. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res 2000; 859: 404–409.

    Article  CAS  PubMed  Google Scholar 

  157. Erickson JC, Clegg KE, Palmiter RD . Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 1996; 381: 415–421.

    Article  CAS  PubMed  Google Scholar 

  158. Kushi A, Sasai H, Koizumi H, Takeda N, Yokoyama M, Nakamura M . Obesity and mild hyperinsulinemia found in neuropeptide Y–Y1 receptor-deficient mice. Proc Natl Acad Sci USA 1998; 95: 15659–15664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pedrazzini T, Seydoux J, Kunstner P, Aubert JF, Grouzmann E, Beermann F et al. Cardiovascular response, feeding behavior and locomotor activity in mice lacking the NPY Y1 receptor. Nat Med 1998; 4: 722–726.

    Article  CAS  PubMed  Google Scholar 

  160. Qian S, Chen H, Weingarth D, Trumbauer ME, Novi DE, Guan X et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 2002; 22: 5027–5035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Erickson JC, Hollopeter G, Palmiter RD . Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 1996; 274: 1704–1707.

    Article  CAS  PubMed  Google Scholar 

  162. Tschop M, Smiley DL, Heiman ML . Ghrelin induces adiposity in rodents. Nature 2000; 407: 908–913.

    Article  CAS  PubMed  Google Scholar 

  163. Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003; 37: 649–661.

    Article  CAS  PubMed  Google Scholar 

  164. Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y (NPY) and agouti-related protein (AgRP). Endocrinology 2004; 145: 2607–2612.

    Article  CAS  PubMed  Google Scholar 

  165. Wortley KE, Anderson KD, Garcia K, Murray JD, Malinova L, Liu R et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA 2004; 101: 8227–8232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Naveilhan P, Neveu I, Arenas E, Ernfors P . Complementary and overlapping expression of Y1, Y2 and Y5 receptors in the developing and adult mouse nervous system. Neuroscience 1998; 87: 289–302.

    Article  CAS  PubMed  Google Scholar 

  167. Kopp J, Xu ZQ, Zhang X, Pedrazzini T, Herzog H, Kresse A et al. Expression of the neuropeptide Y Y1 receptor in the CNS of rat and of wild-type and Y1 receptor knock-out mice. Focus on immunohistochemical localization. Neuroscience 2002; 111: 443–532.

    Article  CAS  PubMed  Google Scholar 

  168. Kishi T, Aschkenasi CJ, Choi BJ, Lee CE, Liu H, Hollenberg AN et al. Neuropeptide Y Y1 receptor mRNA in the rat and mouse brain: Distribution and colocalization with melanocortin-4 receptor. J Comp Neurol 2005, in press.

  169. Figlewicz DP, Woods SC . Adiposity signals and brain reward mechanisms. Trends Pharmacol Sci 2000; 21: 235–236.

    Article  CAS  PubMed  Google Scholar 

  170. Saper CB . Brainstem modulation of sensation, movement, and consciousness. In: Kandel ER, Schwartz JH, Jessell TM (eds). Principles of Neural Science, 4th edn. McGraw-Hill: New York, 2000, pp 889–909.

    Google Scholar 

  171. Richardson NR, Gratton A . Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food reinforcement: an electrochemical study in rat. J Neurosci 1996; 16: 8160–8169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hagan MM, Rushing PA, Benoit SC, Woods SC, Seeley RJ . Opioid receptor involvement in the effect of AgRP- (83-132) on food intake and food selection. Am J Physiol Regul Integr Comp Physiol 2001; 280: R814–R821.

    Article  CAS  PubMed  Google Scholar 

  173. Wisse BE, Frayo RS, Schwartz MW, Cummings DE . Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology 2001; 142: 3292–3301.

    Article  CAS  PubMed  Google Scholar 

  174. Marks DL, Ling N, Cone RD . Role of the central melanocortin system in cachexia. Cancer Res 2001; 61: 1432–1438.

    CAS  PubMed  Google Scholar 

  175. Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H et al. Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 1994; 350: 412–438.

    Article  CAS  PubMed  Google Scholar 

  176. Jacquet YF . Opiate effects after adrenocorticotropin or beta-endorphin injection in the periaqueductal gray matter of rats. Science 1978; 201: 1032–1034.

    Article  CAS  PubMed  Google Scholar 

  177. Alvaro JD, Taylor JR, Duman RS . Molecular and behavioral interactions between central melanocortins and cocaine. J Pharmacol Exp Ther 2003; 304: 391–399.

    Article  CAS  PubMed  Google Scholar 

  178. Hayward MD, Pintar JE, Low MJ . Selective reward deficit in mice lacking beta-endorphin and enkephalin. J Neurosci 2002; 22: 8251–8258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bozarth MA, Wise RA . Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 1984; 224: 516–517.

    Article  CAS  PubMed  Google Scholar 

  180. Thiele TE, Marsh DJ, Ste Marie L, Bernstein IL, Palmiter RD . Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature 1998; 396: 366–369.

    Article  CAS  PubMed  Google Scholar 

  181. Thiele TE, Koh MT, Pedrazzini T . Voluntary alcohol consumption is controlled via the neuropeptide Y Y1 receptor. J Neurosci 2002; 22: RC208.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Oswald LM, Wand GS . Opioids and alcoholism. Physiol Behav 2004; 81: 339–358.

    Article  CAS  PubMed  Google Scholar 

  183. Kandel ER . Disorders of mood: depression, mania, and anxiety disorders. In: Kandel ER, Schwartz JH, Jessell TM (eds). Principles of Neural Science, 4th edition. McGraw-Hill: New York, 2000, pp 1209–1226.

    Google Scholar 

  184. Vergoni AV, Bertolini A, Wikberg JE, Schioth HB . Selective melanocortin MC4 receptor blockage reduces immobilization stress-induced anorexia in rats. Eur J Pharmacol 1999; 369: 11–15.

    Article  CAS  PubMed  Google Scholar 

  185. Chaki S, Ogawa S, Toda Y, Funakoshi T, Okuyama S . Involvement of the melanocortin MC4 receptor in stress-related behavior in rodents. Eur J Pharmacol 2003; 474: 95–101.

    Article  CAS  PubMed  Google Scholar 

  186. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM . Neurobiology of depression. Neuron 2002; 34: 13–25.

    Article  CAS  PubMed  Google Scholar 

  187. Quiroz JA, Singh J, Gould TD, Denicoff KD, Zarate CA, Manji HK . Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol Psychiatry 2004; 9: 756–776.

    Article  CAS  PubMed  Google Scholar 

  188. Kawashima N, Chaki S, Okuyama S . Electrophysiological effects of melanocortin receptor ligands on neuronal activities of monoaminergic neurons in rats. Neurosci Lett 2003; 353: 119–122.

    Article  CAS  PubMed  Google Scholar 

  189. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF et al. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 1995; 374: 542–546.

    Article  CAS  PubMed  Google Scholar 

  190. Kiss J, Leranth C, Halasz B . Serotoninergic endings on VIP-neurons in the suprachiasmatic nucleus and on ACTH-neurons in the arcuate nucleus of the rat hypothalamus. A combination of high resolution autoradiography and electron microscopic immunocytochemistry. Neurosci Lett 1984; 44: 119–124.

    Article  CAS  PubMed  Google Scholar 

  191. Heisler LK, Cowley MA, Tecott LH, Fan W, Low MJ, Smart JL et al. Activation of central melanocortin pathways by fenfluramine. Science 2002; 29: 609–611.

    Article  Google Scholar 

  192. Heisler LK, Cowley MA, Kishi T, Tecott LH, Fan W, Low MJ et al. Central serotonin and melanocortin pathways regulating energy homeostasis. Ann N Y Acad Sci 2003; 994: 169–174.

    Article  CAS  PubMed  Google Scholar 

  193. Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD et al. Valvular heart disease associated with fenfluramine–phentermine. N Engl J Med 1997; 337: 581–588.

    Article  CAS  PubMed  Google Scholar 

  194. Zec N, Filiano JJ, Kinney HC . Anatomic relationships of the human arcuate nucleus of the medulla: a DiI-labeling study. J Neuropathol Exp Neurol 1997; 56: 509–522.

    Article  CAS  PubMed  Google Scholar 

  195. Sim LJ, Joseph SA . Arcuate nucleus projections to brainstem regions which modulate nociception. J Chem Neuroanat 199; 4: 97–109.

    Article  Google Scholar 

  196. Nonogaki K . New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 2000; 43: 533–549.

    Article  CAS  PubMed  Google Scholar 

  197. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415: 339–343.

    Article  CAS  PubMed  Google Scholar 

  198. Meltzer HY, Li Z, Kaneda Y, Ichikawa J . Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1159–1172.

    Article  CAS  PubMed  Google Scholar 

  199. Monteleone P, Fabrazzo M, Tortorella A, La Pia S, Maj M . Pronounced early increase in circulating leptin predicts a lower weight gain during clozapine treatment. J Clin Psychopharmacol 2002; 22: 424–426.

    Article  CAS  PubMed  Google Scholar 

  200. Bayer L, Risold PY, Griffond B, Fellmann D . Rat diencephalic neurons producing melanin-concentrating hormone are influenced by ascending cholinergic projections. Neuroscience 1999; 91: 1087–1101.

    Article  CAS  PubMed  Google Scholar 

  201. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R et al. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 2001; 410: 207–212.

    Article  CAS  PubMed  Google Scholar 

  202. Hallanger AE, Wainer BH . Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 1988; 274: 483–515.

    Article  CAS  PubMed  Google Scholar 

  203. Swanson LW, Köhler C, Björklund A . The limbic region. I: the septohippocampal system. In: Björklund A, Hökfelt T, Swanson LW (eds). Handbook of Chemical Neuroanatomy, vol 5, Integrated Systems. Elsevier: Amsterdam, 1987, pp 125–277.

    Google Scholar 

  204. Kishi T, Tsumori T, Ono K, Yokota S, Ishino H, Yasui Y . Topographical organization of projections from the subiculum to the hypothalamus in the rat. J Comp Neurol 2000; 419: 205–222.

    Article  CAS  PubMed  Google Scholar 

  205. Eyigor O, Centers A, Jennes L . Distribution of ionotropic glutamate receptor subunit mRNAs in the rat hypothalamus. J Comp Neurol 2001; 434: 101–124.

    Article  CAS  PubMed  Google Scholar 

  206. Caberlotto L, Fuxe K, Sedvall G, Hurd YL . Localization of neuropeptide Y Y1 mRNA in the human brain: abundant expression in cerebral cortex and striatum. Eur J Neurosci 1997; 9: 1212–1225.

    Article  CAS  PubMed  Google Scholar 

  207. Wahlestedt C, Pich EM, Koob GF, Yee F, Heilig M . Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 1993; 259: 528–531.

    Article  CAS  PubMed  Google Scholar 

  208. Thorsell A, Michalkiewicz M, Dumont Y, Quirion R, Caberlotto L, Rimondini R et al. Behavioral insensitivity to restraint stress, absent fear suppression of behavior and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression. Proc Natl Acad Sci USA 2000; 97: 12852–12857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Winterer G, Weinberger DR . Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 2004; 27: 683–690.

    Article  CAS  PubMed  Google Scholar 

  210. Hanada R, Teranishi H, Pearson JT, Kurokawa M, Hosoda H, Fukushima N et al. Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat Med 2004; 10: 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  211. Howard AD, Wang R, Pong SS, Mellin TN, Strack A, Guan XM et al. Identification of receptors for neuromedin U and its role in feeding. Nature 2000; 406: 70–74.

    Article  CAS  PubMed  Google Scholar 

  212. Graham ES, Turnbull Y, Fotheringham P, Nilaweera K, Mercer JG, Morgan PJ et al. Neuromedin U and Neuromedin U receptor-2 expression in the mouse and rat hypothalamus: effects of nutritional status. J Neurochem 2003; 87: 1165–1173.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health; Grant number DK56116; Grant number DK53301; Grant number MH61583; Grant number DK 567658; Grant number 2 R01 DK041096-14A1, as well as by the Yamada Science Foundation and Kato Memorial Bioscience Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishi, T., Elmquist, J. Body weight is regulated by the brain: a link between feeding and emotion. Mol Psychiatry 10, 132–146 (2005). https://doi.org/10.1038/sj.mp.4001638

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001638

Keywords

This article is cited by

Search

Quick links