Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Interleukin 1α (IL-1α) induced activation of p38 mitogen-activated protein kinase inhibits glucocorticoid receptor function

Abstract

Previous studies have demonstrated that interleukinα (IL-1α) inhibits glucocorticoid receptor (GR) nuclear translocation and dexamethasone (Dex)-induced gene transcription. Given that IL-1α is a potent activator of the p38 mitogen-activated protein kinase (MAPK) signal transduction pathway and p38 MAPK has been associated with reduced GR function, we examined the role of p38 MAPK in IL-1α-mediated inhibition of GR function in mouse fibroblast cells stably transfected with a GR-mediated reporter gene construct (LMCAT cells). Treatment of LMCAT cells with IL-1α (1000 U/ml) for 24 h inhibited Dex (50 nM)-induced GRE-CAT activity by 35%. When cells were cotreated for 24 h with IL-1α plus SB-203580 (0.5–1 μM), a selective p38 inhibitor, IL-1α's inhibitory effect on GR function as determined by Dex-induced GRE-CAT activity was reversed. Using gel mobility shift assay, SB-203580 was also found to reverse IL-1α inhibition of GR-GRE binding. Further confirming the role of p38 pathways, pretreatment of LMCAT cells with antisense oligonucleotides targeted to p38 MAPK completely abrogated IL-1α inhibition of Dex-induced GRE-CAT activity. Taken together, these results demonstrate that activation of p38 MAPK pathways are involved in IL-1α-mediated inhibition of GR function. In addition, these findings extend the intracellular targets of p38 to include the GR and indicate that p38 inhibitors may have special utility in immunologic and/or neuropsychiatric disorders associated with impaired GR-mediated feedback inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Holsboer F . The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000; 23: 477–501.

    Article  CAS  Google Scholar 

  2. Pariante CM, Miller AH . Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 2001; 49: 391–404.

    Article  CAS  Google Scholar 

  3. Miller AH, Pariante CM, Pearce BD . Effects of cytokines on glucocorticoid receptor expression and function. Glucocorticoid resistance and relevance to depression. Adv Exp Med Biol 1999; 461: 107–116.

    Article  CAS  Google Scholar 

  4. Maes M, Meltzer HY, Scharpe S, Bosmans E, Suy E, De Meester I et al. Relationships between lower plasma L-tryptophan levels and immune-inflammatory variables in depression. Psychiatry Res 1993; 49: 151–165.

    Article  CAS  Google Scholar 

  5. Weidenfeld J, Yirmiya R . Effects of bacterial endotoxin on the glucocorticoid feedback regulation of adrenocortical response to stress. Neuroimmunomodulation 1996; 3: 352–357.

    Article  CAS  Google Scholar 

  6. Kent S, Bluthe RM, Kelley KW, Dantzer R . Sickness behavior as a new target for drug development. Trends Pharmacol Sci 1992; 13: 24–28.

    Article  CAS  Google Scholar 

  7. Kam J, Szefler S, Surs W, Sher E, Leung D . Combination IL-2 and IL-4 reduces glucocorticoid receptor-binding affinity and T cell response to glucocorticoids. J Immunol 1993; 151: 3460–3466.

    PubMed  CAS  Google Scholar 

  8. Hill M, Stith R, McCallum R . Interleukin 1: a regulatory role in glucocorticoid-regulated hepatic metabolism. J Immunol 1986; 137: 858–862.

    PubMed  CAS  Google Scholar 

  9. Hill M, Stith R, McCallum R . Human recombinant IL-1 alters glucocorticoid receptor function in Reuber hepatoma cells. J Immunol 1988; 141: 1522–1528.

    PubMed  CAS  Google Scholar 

  10. Spahn J, Szefler S, Surs W, Doherty D, Nimmagadda S, Leung D . A novel action of IL-13: induction of diminished monocyte glucocorticoid receptor-binding affinity. J Immunol 1996; 157: 2654–2659.

    PubMed  CAS  Google Scholar 

  11. Falus A, Biro J, Rakasz E . Cytokine networks and corticosteroid receptors. Ann NY Acad Sci 1995; 762: 71–77; discussion 77–78.

    Article  CAS  Google Scholar 

  12. Liu LY, Sun B, Tian Y, Lu BZ, Wang J . Changes of pulmonary glucocorticoid receptor and phospholipase A2 in sheep with acute lung injury after high dose endotoxin infusion. Am Rev Respir Dis 1993; 148: 878–881.

    Article  CAS  Google Scholar 

  13. Corrigan CJ, Brown PH, Barnes NC, Szefler SJ, Tsai JJ, Frew AJ et al. Glucocorticoid resistance in chronic asthma. Glucocorticoid pharmacokinetics, glucocorticoid receptor characteristics, and inhibition of peripheral blood T cell proliferation by glucocorticoids in vitro. Am Rev Respir Dis 1991; 144: 1016–1025.

    Article  CAS  Google Scholar 

  14. Sher ER, Leung DY, Surs W, Kam JC, Zieg G, Kamada AK et al. Steroid-resistant asthma. Cellular mechanisms contributing to inadequate response to glucocorticoid therapy. J Clin Invest 1994; 93: 33–39.

    Article  CAS  Google Scholar 

  15. Norbiato G, Bevilacqua M, Vago T, Clerici M . Glucocorticoids and interferon-alpha in the acquired immunodeficiency syndrome. J Clin Endocrinol Metab 1996; 81: 2601–2606.

    PubMed  CAS  Google Scholar 

  16. Evans DL, Staab JP, Petitto JM, Morrison MF, Szuba MP, Ward HE et al. Depression in the medical setting: biopsychological interactions and treatment considerations. J Clin Psychiatry 1999; 60: 40–55; discussion 56.

    Article  Google Scholar 

  17. Dantzer R . Cytokine-induced sickness behavior: mechanisms and implications. Ann NY Acad Sci 2001; 933: 222–234.

    Article  CAS  Google Scholar 

  18. Leonard BE . The immune system, depression and the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25: 767–780.

    Article  CAS  Google Scholar 

  19. Yirmiya R, Pollak Y, Morag M, Reichenberg A, Barak O, Avitsur R et al. Illness, cytokines, and depression. Ann NY Acad Sci 2000; 917: 478–487.

    Article  CAS  Google Scholar 

  20. Yirmiya R, Weidenfeld J, Pollak Y, Morag M, Morag A, Avitsur R et al. Cytokines, “depression due to a general medical condition,” and antidepressant drugs. Adv Exp Med Biol 1999; 461: 283–316.

    Article  CAS  Google Scholar 

  21. Pariante CM, Pearce BD, Pisell TL, Sanchez CI, Po C, Su C et al. The proinflammatory cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function. Endocrinology 1999; 140: 4359–4366.

    Article  CAS  Google Scholar 

  22. Krstic MD, Rogatsky I, Yamamoto KR, Garabedian MJ . Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol Cell Biol 1997; 17: 3947–3954.

    Article  CAS  Google Scholar 

  23. Saklatvala J, Dean J, Finch A . Protein kinase cascades in intracellular signalling by interleukin-I and tumour necrosis factor. Biochem Soc Symp 1999; 64: 63–77.

    PubMed  CAS  Google Scholar 

  24. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 1995; 270: 7420–7426.

    Article  CAS  Google Scholar 

  25. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994; 78: 1027–1037.

    Article  CAS  Google Scholar 

  26. Irusen E, Matthews JG, Takahashi A, Barnes PJ, Chung KF, Adcock IM . p38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: role in steroid-insensitive asthma. J Allergy Clin Immunol 2002; 109: 649–657.

    Article  CAS  Google Scholar 

  27. Aoshiba K, Yasui S, Hayashi M, Tamaoki J, Nagai A . Role of p38-mitogen-activated protein kinase in spontaneous apoptosis of human neutrophils. J Immunol 1999; 162: 1692–1700.

    PubMed  CAS  Google Scholar 

  28. Baldassare JJ, Bi Y, Bellone CJ . The role of p38 mitogen-activated protein kinase in IL-1 beta transcription. J Immunol 1999; 162: 5367–5373.

    PubMed  CAS  Google Scholar 

  29. Barancik M, Bohacova V, Kvackajova J, Hudecova S, Krizanova O, Breier A . SB203580, a specific inhibitor of p38-MAPK pathway, is a new reversal agent of P-glycoprotein-mediated multidrug resistance. Eur J Pharm Sci 2001; 14: 29–36.

    Article  CAS  Google Scholar 

  30. Sharom FJ . The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol 1997; 160: 161–175.

    Article  CAS  Google Scholar 

  31. Stylianou E, Saklatvala J . Interleukin-1. Int J Biochem Cell Biol 1998; 30: 1075–1079.

    Article  CAS  Google Scholar 

  32. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994; 372: 739–746.

    Article  CAS  Google Scholar 

  33. Ward SG, Parry RV, Matthews J, O'Neill L . A p38 MAP kinase inhibitor SB203580 inhibits CD28-dependent T cell proliferation and IL-2 production. Biochem Soc Trans 1997; 25: 304S.

    Article  CAS  Google Scholar 

  34. Crawley JB, Rawlinson L, Lali FV, Page TH, Saklatvala J, Foxwell BM . T cell proliferation in response to interleukins 2 and 7 requires p38MAP kinase activation. J Biol Chem 1997; 272: 15023–15027.

    Article  CAS  Google Scholar 

  35. Whitmarsh AJ, Davis RJ . Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 1996; 74: 589–607.

    Article  CAS  Google Scholar 

  36. McDermott EP, O'Neill LA . Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1. J Biol Chem 2002; 277: 7808–7815.

    Article  CAS  Google Scholar 

  37. Moriguchi T, Kuroyanagi N, Yamaguchi K, Gotoh Y, Irie K, Kano T et al. A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J Biol Chem 1996; 271: 13675–13679.

    Article  CAS  Google Scholar 

  38. Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1995; 364: 229–233.

    Article  CAS  Google Scholar 

  39. McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi GP et al. Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem 1996; 271: 8488–8492.

    Article  CAS  Google Scholar 

  40. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ . FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 1996; 15: 4629–4642.

    Article  CAS  Google Scholar 

  41. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ . MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 1996; 16: 1247–1255.

    Article  CAS  Google Scholar 

  42. Wang XZ, Ron D . Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 1996; 272: 1347–1349.

    Article  CAS  Google Scholar 

  43. Zervos AS, Faccio L, Gatto JP, Kyriakis JM, Brent R . Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein. Proc Natl Acad Sci USA 1995; 92: 10531–10534.

    Article  CAS  Google Scholar 

  44. Stauber C, Altschmied J, Akerblom IE, Marron JL, Mellon PL . Mutual cross-interference between glucocorticoid receptor and CREB inhibits transactivation in placental cells. New Biologist 1992; 4: 527–540.

    PubMed  CAS  Google Scholar 

  45. Peters MJ, Adcock IM, Brown CR, Barnes PJ . Beta-adrenoceptor agonists interfere with glucocorticoid receptor DNA binding in rat lung. Eur J Pharm 1995; 289: 275–281.

    Article  CAS  Google Scholar 

  46. Ray A, Prefontaine KE . Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 1994; 91: 752–756.

    Article  CAS  Google Scholar 

  47. McKay LI, Cidlowski JA . Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol 1998; 12: 45–56.

    Article  CAS  Google Scholar 

  48. Ajmone-Cat MA, De Simone R, Nicolini A, Minghetti L, Yalcin A, Koulich E et al. Effects of phosphatidylserine on p38 mitogen activated protein kinase, cyclic AMP responding element binding protein and nuclear factor-kappaB activation in resting and activated microglial cells. J Neurochem 2003; 84: 413–416.

    Article  CAS  Google Scholar 

  49. Lee H, Bai W . Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol Cell Biol 2002; 22: 5835–5845.

    Article  CAS  Google Scholar 

  50. Gianni M, Bauer A, Garattini E, Chambon P, Rochette-Egly C . Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RAR gamma degradation and transactivation. EMBO J 2002; 21: 3760–3769.

    Article  CAS  Google Scholar 

  51. Barger PM, Browning AC, Garner AN, Kelly DP . p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. J Biol Chem 2001; 276: 44495–44501.

    Article  CAS  Google Scholar 

  52. Knutti D, Kressler D, Kralli A . Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci USA 2001; 98: 9713–9718.

    Article  CAS  Google Scholar 

  53. Lee JC, Kassis S, Kumar S, Badger A, Adams JL . p38 mitogen-activated protein kinase inhibitors—mechanisms and therapeutic potentials. Pharmacol Ther 1999; 82: 389–397.

    Article  CAS  Google Scholar 

  54. Wion D, Neveu I, Jehan F, Brachet P . Pertussis toxin provides evidence for two independent signalling pathways leading to the activation of the nerve growth factor gene. J Neurosci Res 1992; 31: 294–300.

    Article  CAS  Google Scholar 

  55. Wadekar SA, Li D, Periyasamy S, Sanchez ER . Inhibition of heat shock transcription factor by GR. Mol Endocrinol 2001; 15: 1396–1410.

    Article  CAS  Google Scholar 

  56. Kim AH, Khursigara G, Sun X, Franke TF, Chao MV . Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 2001; 21: 893–901.

    Article  CAS  Google Scholar 

  57. Lee JY, Hannun YA, Obeid LM . Functional dichotomy of protein kinase C (PKC) in tumor necrosis factor-alpha (TNF-alpha) signal transduction in L929 cells. Translocation and inactivation of PKC by TNF-alpha. J Biol Chem 2000; 275: 29290–29298.

    Article  CAS  Google Scholar 

  58. Miller AH, Vogt GJ, Pearce BD . The phosphodiesterase type 4 inhibitor, rolipram, enhances glucocorticoid receptor function. Neuropsychopharmacology 2002; 27: 939–948.

    Article  CAS  Google Scholar 

  59. Pariante CM, Pearce BD, Pisell TL, Owens MJ, Miller AH . Steroid-independent translocation of the glucocorticoid receptor by the antidepressant desipramine. Mol Pharmacol 1997; 52: 571–581.

    Article  CAS  Google Scholar 

  60. Leonhardt S, Gorospe E, Hoffman BJ, Teitler M . Molecular pharmacological differences in the interaction of serotonin with 5-hydroxytryptamine1C and 5-hydroxytryptamine2 receptors. Mol Pharmacol 1992; 42: 328–335.

    PubMed  CAS  Google Scholar 

  61. Julius D, Huang KN, Livelli TJ, Axel R, Jessell TM . The 5HT2 receptor defines a family of structurally distinct but functionally conserved serotonin receptors. Proc Natl Acad Sci USA 1990; 87: 928–932.

    Article  CAS  Google Scholar 

  62. Manier DH, Eiring A, Shelton RC, Sulser F . Beta-adrenoceptor-linked protein kinase A (PKA) activity in human fibroblasts from normal subjects and from patients with major depression. Neuropsychopharmacology 1996; 15: 555–561.

    Article  CAS  Google Scholar 

  63. Shelton RC, Mainer DH, Sulser F . cAMP-dependent protein kinase activity in major depression. Am J Psychiatry 1996; 153: 1037–1042.

    Article  CAS  Google Scholar 

  64. Dwivedi Y, Conley RR, Roberts RC, Tamminga CA, Pandey GN . [(3)H]cAMP binding sites and protein kinase a activity in the prefrontal cortex of suicide victims. Am J Psychiatry 2002; 159: 66–73.

    Article  Google Scholar 

  65. Lamberts SW . The glucocorticoid insensitivity syndrome. Horm Res 1996; 45: 2–4.

    Article  CAS  Google Scholar 

  66. McKay LI, Cidlowski JA . Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev 1999; 20: 435–459.

    PubMed  CAS  Google Scholar 

  67. Branger J, van den Blink B, Weijer S, Madwed J, Bos CL, Gupta A et al. Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. J Immunol 2002; 168: 4070–4077.

    Article  CAS  Google Scholar 

  68. Paccani SR, Boncristiano M, Ulivieri C, D'Elios MM, Del Prete G, Baldari CT . Nonsteroidal anti-inflammatory drugs suppress T-cell activation by inhibiting p38 MAPK induction. J Biol Chem 2002; 277: 1509–1513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institute of Mental Health (MH00680 and MH47674-08). Xiaohong Wang, MD, PhD is a recipient of NIMH Minority Investigator Research Supplement, Janssen Faculty Career Development Award and APA/Wyeth-Ayerst, MD/PhD Psychiatric Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A H Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wu, H. & Miller, A. Interleukin 1α (IL-1α) induced activation of p38 mitogen-activated protein kinase inhibits glucocorticoid receptor function. Mol Psychiatry 9, 65–75 (2004). https://doi.org/10.1038/sj.mp.4001339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001339

Keywords

This article is cited by

Search

Quick links