Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on IMATINIB as a Model for Signal Transduction Inhibitors

Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy

Abstract

Selective inhibition of the BCR-ABL tyrosine kinase by imatinib (STI571, Glivec/Gleevec) is a promising new therapeutic strategy in patients with chronic myelogenous leukemia (CML). Despite significant hematologic and cytogenetic responses, resistance occurs, particularly in patients with advanced disease. We sought to determine the underlying mechanisms. Sixty-six patients with CML in myeloid blast crisis (n = 33), lymphoid blast crisis (n = 2), accelerated phase (n = 16), chronic phase (n = 13), and BCR-ABL-positive acute lymphoblastic leukemia (n = 2) resistant to imatinib were investigated. Median duration of imatinib therapy was 148 days (range 6–882). Patients were evaluated for genomic amplification of BCR-ABL, overexpression of BCR-ABL transcripts, clonal karyotypic evolution, and mutations of the imatinib binding site in the BCR-ABL tyrosine kinase domain. Results were as follows: (1) Median levels of BCR-ABL transcripts, were not significantly changed at the time of resistance but 7/55 patients showed a >10-fold increase in BCR-ABL levels; (2) genomic amplification of BCR-ABL was found in 2/32 patients evaluated by fluorescence in situ hybridization; (3) additional chromosomal aberrations were observed in 19/36 patients; (4) point mutations of the ABL tyrosine kinase domain resulting in reactivation of the BCR-ABL tyrosine kinase were detected in 23/66 patients. In conclusion, although the heterogeneous development of imatinib resistance is challenging, the fact that BCR-ABL is active in many resistant patients suggests that the chimeric oncoprotein remains a good therapeutic target. However, patients with clonal evolution are more likely to have BCR-ABL-independent mechanisms of resistance. The observations warrant trials combining imatinib with other agents.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Sawyers CL . Chronic myeloid leukemia N Engl J Med 1999 340: 1330–1340

    Article  CAS  PubMed  Google Scholar 

  2. Melo JV . The molecular biology of chronic myeloid leukaemia Leukemia 1996 10: 751–756

    CAS  PubMed  Google Scholar 

  3. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, Schiffer CA, Fischer T, Niederwieser D, O'Brien SG, Hochhaus A, Ottmann OG, Gratwohl A, Baccarani M, Stone R, Tura S, Mahon FX, Fernandes Reese S, Gathmann I, Capdeville R, Kantarjian HM, Sawyers CL . Glivec™ (imatinib mesylate) induces hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase II study Blood 2002 99: 1928–1937

    Article  CAS  PubMed  Google Scholar 

  4. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller C, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F, Deininger MWN, Fischer T, O'Brien SG, Stone R, Gambacorti-Passerini C, Russell N, Reiffers J, Shea T, Chapuis B, Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C, Gratwohl A, Mandelli F, Ben-Am M, Gathmann I, Capdeville R, Paquette RL, Druker BJ . Glivec™ (imatinib mesylate) induces hematologic and cytogenetic responses in patients with chronic myeloid leukemia in myeloid blast crisis: results of a phase II study Blood 2002 99: 3530–3539

    Article  CAS  PubMed  Google Scholar 

  5. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL . Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia N Engl J Med 2001 344: 1031–1037

    Article  CAS  PubMed  Google Scholar 

  6. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Fernandez Reese S, Ford JM, Capdeville R, Talpaz M . Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome N Engl J Med 2001 344: 1038–1042

    Article  CAS  PubMed  Google Scholar 

  7. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, Niederwieser D, Resta D, Capdeville R, Zoellner U, Talpaz M, Druker B on behalf of the International STI571 CML Study Group. Imatinib mesylate (Gleevec™) induces hematologic and cytogenetic responses in the majority of patients with chronic myeloid leukemia in chronic phase: results of a phase II study N Engl J Med 2002 346: 645–652

    Article  CAS  PubMed  Google Scholar 

  8. Tipping AJ, Mahon FX, Lagarde V, Goldman JM, Melo JV . Restoration of sensitivity to STI571 in STI571-resistant chronic myeloid leukemia cells Blood 2001 98: 3864–3867

    Article  CAS  PubMed  Google Scholar 

  9. Mahon FX, Deininger MWN, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV . Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance Blood 2000 96: 1070–1079

    CAS  PubMed  Google Scholar 

  10. Weisberg E, Griffin JD . Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines Blood 2000 95: 3498–3505

    CAS  PubMed  Google Scholar 

  11. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, Marchesi E, Supino R, Cambarcorti-Passerini C . Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification Blood 2000 95: 1758–1766

    CAS  PubMed  Google Scholar 

  12. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J . Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase Science 2000 289: 1938–1942

    Article  CAS  PubMed  Google Scholar 

  13. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL . Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification Science 2001 293: 876–880

    Article  CAS  PubMed  Google Scholar 

  14. Hochhaus A, Kreil S, Corbin A, La Rosée P, Lahaye T, Berger U, Cross NCP, Linkesch W, Druker BJ, Hehlmann R . Roots of clinical resistance to STI-571 cancer therapy Science 2001 293: 2163a

    Article  Google Scholar 

  15. Barthe C, Cony-Makhoul P, Melo JV, Reiffers J, Mahon FX . Roots of clinical resistance to STI-571 cancer therapy Science 2001 293: 2163a

    Article  Google Scholar 

  16. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, Herrmann R, Lynch KP, Hughes TP . High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance Blood 2002 99: 3472–3475

    Article  CAS  PubMed  Google Scholar 

  17. Hofmann WK, Jones LC, Lemp NA, de Vos S, Gschaidmeier H, Hoelzer D, Ottmann OG, Koeffler HP . Ph+ acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation Blood 2002 99: 1860–1862

    Article  PubMed  Google Scholar 

  18. von Bubnoff N, Schneller F, Peschel C, Duyster J . BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study Lancet 2002 359: 487–491

    Article  CAS  PubMed  Google Scholar 

  19. Cross NCP, Melo JV, Feng L, Goldman JM . An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders Leukemia 1994 8: 186–189

    CAS  PubMed  Google Scholar 

  20. Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U, Hehlmann R, Hiddemann W, Haferlach T . Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases Leukemia 2002 16: 53–59

    Article  CAS  PubMed  Google Scholar 

  21. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A, Berger U, Hehlmann R, Cross NCP, Hochhaus A . Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR Leukemia 1999 13: 1825–1832

    Article  CAS  PubMed  Google Scholar 

  22. Cross NCP, Feng L, Bungey J, Goldman JM . Minimal residual disease after bone marrow transplant for chronic myeloid leukaemia detected by the polymerase chain reaction Leuk Lymphoma 1993 11 (Suppl. 1): 39–43

    Article  Google Scholar 

  23. Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ . Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia J Biol Chem 1994 269: 22925–22928

    CAS  PubMed  Google Scholar 

  24. Nichols GL, Raines MA, Vera JC, Lacomis L, Tempst P, Golde DW . Identification of CRKL as the constitutively phosphorylated 39- kD tyrosine phosphoprotein in chronic myelogenous leukemia cells Blood 1994 84: 2912–2918

    CAS  PubMed  Google Scholar 

  25. ten Hoeve J, Arlinghaus RB, Guo JQ, Heisterkamp N, Groffen J . Tyrosine phosphorylation of CRKL in Philadelphia + leukemia Blood 1994 84: 1731–1736

    CAS  PubMed  Google Scholar 

  26. Heaney C, Kolibaba K, Bhat A, Oda T, Ohno S, Fanning S, Druker BJ . Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation Blood 1997 89: 297–306

    CAS  PubMed  Google Scholar 

  27. Senechal K, Heaney C, Druker B, Sawyers CL . Structural requirements for function of the Crkl adapter protein in fibroblasts and hematopoietic cells Mol Cell Biol 1998 18: 5082–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corbin AS, Buchdunger E, Pascal F, Druker BJ . Analysis of the structural basis of specificity of STI571 binding to the Abl kinase domain J Biol Chem published 20 June 2002 as 10.1074/jbc.M111525200

  29. Buchdunger E, Zimmermann J, Mett H, Meyer T, Müller M, Druker BJ, Lydon NB . Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative Cancer Res 1996 56: 100–104

    CAS  PubMed  Google Scholar 

  30. Saraste M, Sibbald PR, Wittinghofer A . The P-loop – a common motif in ATP- and GTP-binding proteins Trends Biochem Sci 1990 15: 430–434

    Article  PubMed  Google Scholar 

  31. Shah NP, Nicoll JM, Gorre ME, Paquette RL, Ford J, Sawyers CL . Resistance to Gleevec: Sequence analysis reveals a spectrum of BCR/ABL kinase domain mutations in both acquired- and de novo-resistant cases of chronic myelogenous leukemia (CML) in myeloid blast crisis Blood 2001 98 (Supp. 1): 770a

    Google Scholar 

  32. Dorey K, Engen JR, Kretzschmar J, Wilm M, Neubauer G, Schindler T, Superti-Furga G . Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase Oncogene 2001 20: 8075–8084

    Article  CAS  PubMed  Google Scholar 

  33. Duesberg P, Stindl R, Hehlmann R . Origin of multidrug resistance in cells with and without multidrug resistance genes: Chromosome reassortment catalyzed by aneuploidy Proc Natl Acad Sci USA 2001 98: 11283–11288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chase A, Huntly BJP, Cross NCP . Cytogenetics of chronic myeloid leukemia Best Pract Res Clin Haematol 2001 14: 553–571

    Article  CAS  PubMed  Google Scholar 

  35. Hofmann WK, de Vos S, Elashoff D, Gschaidmeier H, Hoelzer D, Koeffler HP, Ottmann OG . Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study Lancet 2002 359: 481–486

    Article  CAS  PubMed  Google Scholar 

  36. La Rosée P, O'Dwyer ME, Druker BJ . Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective Leukemia 2002 16: 1213–1219

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the members of the German CML study group, co-investigators, nursing and research stuff for the excellent cooperation. Clinical and molecular-cytogenetic data have been provided by PD Dr Harald Rieder, University of Marburg, Germany and Prof Dr Werner Linkesch, University of Graz, Austria. The study was supported by a grant from the German Ministry of Education and Research (BMBF), Competence network ‘Acute and chronic leukemias’ – 01 GI9980/6, and the Forschungsfonds der Fakultät für Klinische Medizin Mannheim der Universität Heidelberg.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochhaus, A., Kreil, S., Corbin, A. et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16, 2190–2196 (2002). https://doi.org/10.1038/sj.leu.2402741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402741

Keywords

This article is cited by

Search

Quick links