Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Immunobiology

Peptides spanning the junctional region of both the abl/bcr and the bcr/abl fusion proteins bind common HLA class I molecules

Abstract

The Philadelphia (Ph) chromosome, resulting from the t(9;22) translocation, is characteristic of chronic myeloid leukemia (CML). As a result of this translocation, two novel chimeric genes are generated and the bcr/abl and abl/bcr fusion proteins expressed. The bcr/abl fusion mRNA is present in all CML patients, whereas the reciprocal abl/bcr fusion mRNA is detectable in about 80% of the Ph+ CML patients. These fusion proteins may undergo enzymatic degradation in the cytosol and give rise to MHC class I restricted peptide epitopes originating from the junctional regions of the translocation products, which thus may serve as novel tumor specific antigens. Previously, other groups have tested peptides corresponding to the junctional region of the bcr/abl protein for their binding capacity to HLA class I molecules and have identified a few candidate epitopes. Peptides originating from the abl/bcr fusion protein have on the other hand so far been neglected, for no apparent reason. We have now extended these studies to include also the reciprocal abl/bcr translocation product by testing a large panel of synthetic peptides corresponding to the junctional regions of both the abl/bcr and the bcr/abl fusion proteins for their ability to stabilize HLA class I molecules. We find that the abl/bcr translocation product may be an even more important source of CML specific peptide antigens and together the junctional sequences of both these proteins contain peptide sequences which bind efficiently to a number of HLA molecules (HLA-A1, -A2, -A3, -A11, -B7, -B27, -B35) and thus may serve as candidate CML specific tumor antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kurzrock R, Gutterman JU, Talpaz M . The molecular genetics of Philadelphia chromosome-positive leukemias New Engl J Med 1988 319: 990–998

    Article  CAS  Google Scholar 

  2. Shtivelman E, Gale RP, Dreazen O, Berrebi A, Zaizov R, Kubonishi I, Miyoshi I, Canaani E . bcr-abl RNA in patients with chronic myelogenous leukemia Blood 1987 69: 971–973

    CAS  PubMed  Google Scholar 

  3. Mes Masson AM, Witte ON . Role of the abl oncogene in chronic myelogenous leukemia Adv Cancer Res 1987 49: 53–74

    Article  CAS  Google Scholar 

  4. Faderl S, Talpaz M, Estrov Z, O'Brien S, Kurzrock R, Kantarjian HM . The biology of chronic myeloid leukemia New Engl J Med 1999 341: 164–172

    Article  CAS  Google Scholar 

  5. Sawyers CL . Chronic myeloid leukemia New Engl J Med 1999 340: 1330–1340

    Article  CAS  Google Scholar 

  6. Campbell ML, Arlinghaus RB . Current status of the BCR gene and its involvement with human leukemia Adv Cancer Res 1991 57: 227–256

    Article  CAS  Google Scholar 

  7. Daley GQ, van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome Science 1990 247: 824–830

    Article  CAS  Google Scholar 

  8. Melo JV . The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype Blood 1996 88: 2375–2384

    CAS  PubMed  Google Scholar 

  9. Melo JV, Gordon DE, Cross NC, Goldman JM . The ABL-BCR fusion gene is expressed in chronic myeloid leukemia Blood 1993 81: 158–165

    CAS  PubMed  Google Scholar 

  10. Chissoe SL, Bodenteich A, Wang YF, Wang YP, Burian D, Clifton SW, Crabtree J, Freeman A, Iyer K, Jian L, Ma Y, McLaury HJ, Pan HQ, Sarham OH, Toth S, Wang Z, Zhang G, Heisterkamp N, Groffen J, Roe BA . Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation Genomics 1995 27: 67–82

    Article  CAS  Google Scholar 

  11. Rammensee HG, Bachmann J, Stevanovic S (eds) . MHC Ligands and Peptide Motifs Springer Verlag: Heidelberg 1997

    Book  Google Scholar 

  12. Parker KC, Bednarek MA, Coligan JE . Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains J Immunol 1994 152: 163–175

    CAS  PubMed  Google Scholar 

  13. DiBrino M, Tsuchida T, Turner RV, Parker KC, Coligan JE, Biddison WE . HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs J Immunol 1993 151: 5930–5935

    CAS  PubMed  Google Scholar 

  14. Scotet E, David Ameline J, Peyrat MA, Moreau Aubry A, Pinczon D, Lim A, Even J, Semana G, Berthelot JM, Breathnach R, Bonneville M, Houssaint E . T cell responses to Epstein–Barr virus transactivators in chronic rheumatoid arthritis J Exp Med 1996 184: 1791–1800

    Article  CAS  Google Scholar 

  15. Hill A, Worth A, Elliott T, Rowland Jones S, Brooks J, Rickinson A, McMichael A . Characterization of two Epstein–Barr virus epitopes restricted by HLA-B7 Eur J Immunol 1995 25: 18–24

    Article  CAS  Google Scholar 

  16. Sutton J, Rowland Jones S, Rosenberg W, Nixon D, Gotch F, Gao XM, Murray N, Spoonas A, Driscoll P, Smith M, Willis A, McMichael A . A sequence pattern for peptides presented to cytotoxic T lymphocytes by HLA B8 revealed by analysis of epitopes and eluted peptides Eur J Immunol 1993 23: 447–453

    Article  CAS  Google Scholar 

  17. Bogedain C, Wolf H, Modrow S, Stuber G, Jilg W . Specific cytotoxic T lymphocytes recognize the immediate–early transactivator Zta of Epstein–Barr virus J Virol 1995 69: 4872–4879

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Silins SL, Cross SM, Elliott SL, Pye SJ, Burrows SR, Burrows JM, Moss DJ, Argaet VP, Misko IS . Development of Epstein–Barr virus-specific memory T cell receptor clonotypes in acute infectious mononucleosis J Exp Med 1996 184: 1815–1824

    Article  CAS  Google Scholar 

  19. Burrows SR, Sculley TB, Misko IS, Schmidt C, Moss DJ . An Epstein–Barr virus-specific cytotoxic T cell epitope in EBV nuclear antigen 3 (EBNA 3) J Exp Med 1990 171: 345–349

    Article  CAS  Google Scholar 

  20. Tussey LG, Rowland Jones S, Zheng TS, Androlewicz MJ, Cresswell P, Frelinger JA, McMichael AJ . Different MHC class I alleles compete for presentation of overlapping viral epitopes Immunity 1995 3: 65–77

    Article  CAS  Google Scholar 

  21. Huet S, Nixon DF, Rothbard JB, Townsend A, Ellis SA, McMichael AJ . Structural homologies between two HLA B27-restricted peptides suggest residues important for interaction with HLA B27 Int Immunol 1990 2: 311–316

    Article  CAS  Google Scholar 

  22. Phillips RE, Rowland-Jones S, Nixon DF, Gotch FM, Edwards JP, Ogunlesi AO, Elvin JG, Rothbard JA, Bangham CR, Rizza CR, McMichael AJ . Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition Nature 1991 354: 453–459

    Article  CAS  Google Scholar 

  23. Gotch F, McMichael A, Rothbard J . Recognition of influenza A matrix protein by HLA-A2-restricted cytotoxic T lymphocytes. Use of analogues to orientate the matrix peptide in the HLA-A2 binding site J Exp Med 1988 168: 2045–2057

    Article  CAS  Google Scholar 

  24. Hill AV, Elvin J, Willis AC, Aidoo M, Allsopp CE, Gotch FM, Gao XM, Takiguchi M, Greenwood BM, Townsend AR, McMichael AJ, Whittle HC . Molecular analysis of the association of HLA-B53 and resistance to severe malaria Nature 1992 360: 434–439

    Article  CAS  Google Scholar 

  25. Henderson RA, Cox AL, Sakaguchi K, Appella E, Shabanowitz J, Hunt DF, Engelhard VH . Direct identification of an endogenous peptide recognized by multiple HLA-A2.1-specific cytotoxic T cells Proc Natl Acad Sci USA 1993 90: 10275–10279

    Article  CAS  Google Scholar 

  26. Kubo RT, Sette A, Grey HM, Appella E, Sakaguchi K, Zhu NZ, Arnott D, Sherman N, Shabanowitz J, Michel H, Bodnar WM, Davis TA, Hunt DF . Definition of specific peptide motifs for four major HLA-A alleles J Immunol 1994 152: 3913–3924

    CAS  PubMed  Google Scholar 

  27. Salter RD, Cresswell P . Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid EMBO J 1986 5: 943–949

    Article  CAS  Google Scholar 

  28. Anderson KS, Alexander J, Wei M, Cresswell P . Intracellular transport of class I MHC molecules in antigen processing mutant cell lines J Immunol 1993 151: 3407–3419

    CAS  PubMed  Google Scholar 

  29. McIntyre CA, Rees RC, Platts KE, Cooke CJ, Smith MO, Mulcahy KA, Murray AK . Identification of peptide epitopes of MAGE-1,-2, -3 that demonstrate HLA-A3-specific binding Cancer Immunol Immunother 1996 42: 246–250

    Article  CAS  Google Scholar 

  30. Gavioli R, Zhang QJ, Marastoni M, Guerrini R, Reali E, Tomatis R, Masucci MG, Traniello S . Effect of anchor residue modifications on the stability of HLA- All/peptide complexes Biochem Biophys Res Commun 1995 206: 8–14

    Article  CAS  Google Scholar 

  31. Takiguchi M, Kawaguchi G, Sekimata M, Hiraiwa M, Kariyone A, Takamiya Y . The role of the conserved residue in pocket A and the polymorphic residue in pocket E of HLA-B*3501 in presentation of human minor histocompatibility peptides to T cells Int Immunol 1994 6: 1345–1352

    Article  CAS  Google Scholar 

  32. Alexander J, Payne JA, Murray R, Frelinger JA, Cresswell P . Differential transport requirements of HLA and H-2 class I glycoproteins Immunogenetics 1989 29: 380–388

    Article  CAS  Google Scholar 

  33. Smith KD, Lutz CT . Peptide-dependent expression of HLA-B7 on antigen processing-deficient T2 cells J Immunol 1996 156: 3755–3764

    CAS  PubMed  Google Scholar 

  34. Kelly A, Powis SH, Kerr LA, Mockridge I, Elliott T, Bastin J, Uchanska-Ziegler B, Ziegler A, Trowsdale J, Townsend A . Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex Nature 1992 355: 641–644

    Article  CAS  Google Scholar 

  35. Elvin J, Potter C, Elliott T, Cerundolo V, Townsend A . A method to quantify binding of unlabeled peptides to class I MHC molecules and detect their allele specificity J Immunol Meth 1993 158: 161–171

    Article  CAS  Google Scholar 

  36. Tan L, Andersen MH, Elliott T, Haurum JS . An improved assembly assay for peptide binding to HLA-B*2705 and H-2Kk class I MHC molecules J Immunol Meth 1997 209: 25–36

    Article  CAS  Google Scholar 

  37. Neefjes JJ, Breur Vriesendorp BS, van Seventer GA, Ivanyi P, Ploegh HL . An improved biochemical method for the analysis of HLA-class I antigens. Definition of new HLA-class I subtypes Hum Immunol 1986 16: 169–181

    Article  CAS  Google Scholar 

  38. Barnstable CJ, Bodmer WF, Brown G, Galfre G, Milstein C, Williams AF, Ziegler A . Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens—new tools for genetic analysis Cell 1978 14: 9–20

    Article  CAS  Google Scholar 

  39. Brodsky FM, Parham P, Barnstable CJ, Crumpton MJ, Bodmer WF . Monoclonal antibodies for analysis of the HLA system Immunol Rev 1979 47: 3–61

    Article  CAS  Google Scholar 

  40. Lalvani A, Brookes R, Hambleton S, Britton WJ, Hill AV, McMichael AJ . Rapid effector function in CD8+ memory T cells J Exp Med 1997 186: 859–865

    Article  CAS  Google Scholar 

  41. Scheibenbogen C, Lee KH, Mayer S, Stevanovic S, Moebius U, Herr W, Rammensee HG, Keilholz U . A sensitive ELISPOT assay for detection of CD8+ T lymphocytes specific for HLA class I binding peptide epitopes derived from influenza proteins in the blood of healthy donors and melanoma patients Clin Cancer Res 1997 3: 221–226

    CAS  PubMed  Google Scholar 

  42. Andersen MH, Bonfill JE, Neisig A, Arsequell G, Søndergård I, Neefjes J, Zeuthen J, Elliott T, Haurum JS . Phosphorylated peptides can be transported by TAP molecules, presented by class I MHC molecules, and recognized by phosphopeptide-specific cytotoxic T-lymphocytes J Immunol 1999 163: 3812–3818

    CAS  PubMed  Google Scholar 

  43. Bocchia M, Wentworth PA, Southwood S, Sidney J, McGraw K, Scheinberg DA, Sette A . Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules Blood 1995 85: 2680–2684

    CAS  PubMed  Google Scholar 

  44. Mannering SI, McKenzie JL, Fearnley DB, Hart DN . HLA-DRI-restricted bcr-abl (b3a2)-specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigen-presenting cells exposed to b3a2 containing cell lysates Blood 1997 90: 290–297

    CAS  PubMed  Google Scholar 

  45. Greco G, Fruci D, Accapezzato D, Barnaba V, Nisini R, Alimena G, Montefusco E, Vigneti E, Butler R, Tanigaki N, Tosi R . Two brc-abl junction peptides bind HLA-A3 molecules and allow specific induction of human cytotoxic T lymphocytes Leukemia 1996 10: 693–699

    CAS  PubMed  Google Scholar 

  46. Chothia C, Boswell DR, Lesk AM . The outline structure of the T-cell alpha beta receptor EMBO J 1988 7: 3745–3755

    Article  CAS  Google Scholar 

  47. Buzyn A, Ostankovitch M, Zerbib A, Kemula M, Connan F, Varet B, Guillet JG, Choppin J . Peptides derived from the whole sequence of BCR-ABL bind to several class I molecules allowing specific induction of human cytotoxic T lymphocytes Eur J Immunol 1997 27: 2066–2072

    Article  CAS  Google Scholar 

  48. Nieda M, Nicol A, Kikuchi A, Kashiwase K, Taylor K, Suzuki K, Tadokoro K, Juji T . Dendritic cells stimulate the expansion of bcr-abl specific CD8+ T cells with cytotoxic activity against leukemic cells from patients with chronic myeloid leukemia Blood 1998 91: 977–983

    CAS  PubMed  Google Scholar 

  49. Choudhury A, Gajewski JL, Liang JC, Popat U, Claxton DF, Kliche KO, Andreeff M, Champlin RE . Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia Blood 1997 89: 1133–1142

    CAS  PubMed  Google Scholar 

  50. Bocchia M, Korontsvit T, Xu Q, Mackinnon S, Yang SY, Sette A, Scheinberg DA . Specific human cellular immunity to bcr-abl oncogene-derived peptides Blood 1996 87: 3587–3592

    CAS  PubMed  Google Scholar 

  51. Yotnda P, Firat H, Garcia PF, Garcia Z, Gourru G, Vernant JP, Lemonnier FA, Leblond V, Langlade DP . Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia J Clin Invest 1998 101: 2290–2296

    Article  CAS  Google Scholar 

  52. Pawelec G, Max H, Halder T, Bruserud O, Merl A, Da Silva P, Kalbacher H . BCR/ABL leukemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognized by T cells found at low frequency in the repertoire of normal donors Blood 1996 88: 2118–2124

    CAS  PubMed  Google Scholar 

  53. Chen W, Peace DJ, Rovira DK, You SG, Cheever MA . T-cell immunity to the joining region of p210BCR-ABL protein Proc Natl Acad Sci USA 1992 89: 1468–1472

    Article  CAS  Google Scholar 

  54. ten Bosch GJ, Toornvliet AC, Friede T, Melief CJ, Leeksma OC . Recognition of peptides corresponding to the joining region of p210BCR-ABL protein by human T cells Leukemia 1995 9: 1344–1348

    CAS  PubMed  Google Scholar 

  55. Oka T, Sastry KJ, Nehete P, Schapiro SJ, Guo JQ, Talpaz M, Arlinghaus RB . Evidence for specific immune response against P210 BCR-ABL in long-term remission CML patients treated with interferon Leukemia 1998 12: 155–163

    Article  CAS  Google Scholar 

  56. Falkenburg JH, Smit WM, Willemze R . Cytotoxic T-lymphocyte (CTL) responses against acute or chronic myeloid leukemia Immunol Rev 1997 157: 223–230

    Article  CAS  Google Scholar 

  57. Kolb HJ, Holler E . Adoptive immunotherapy with donor lymphocyte transfusions Curr Opin Oncol 1997 9: 139–145

    Article  CAS  Google Scholar 

  58. Mackinnon S, Papadopoulos EB, Carabasi MH, Reich L, Collins NH, Boulad F, Castro Malaspina H, Childs BH, Gillio AP, Kernan NA . Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease Blood 1995 86: 1261–1268

    CAS  PubMed  Google Scholar 

  59. Osman Y, Takahashi M, Zheng Z, Koike T, Toba K, Liu A, Furukawa T, Aoki S, Aizawa Y . Generation of bcr-abl specific cytotoxic T-lymphocytes by using dendritic cells pulsed with bcr-abl (b3a2) peptide: its applicability for donor leukocyte transfusions in marrow grafted CML patients Leukemia 1999 13: 166–174

    Article  CAS  Google Scholar 

  60. Helg C, Roux E, Beris P, Cabrol C, Wacker P, Darbellay R, Wyss M, Jeannet M, Chapuis B, Roosnek E . Adoptive immunotherapy for recurrent CML after BMT Bone Marrow Transplant 1993 12: 125–129

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish Medical Research Council, the Danish Cancer Society, the Novo Nordisk Foundation, the Direktør E Danielsen og Hustru Foundation, Fru Astrid Thaysens Foundation for Medical Research, and the Anders Hasselbalch Foundation against Leukaemia.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berke, Z., Andersen, M., Pedersen, M. et al. Peptides spanning the junctional region of both the abl/bcr and the bcr/abl fusion proteins bind common HLA class I molecules. Leukemia 14, 419–426 (2000). https://doi.org/10.1038/sj.leu.2401703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401703

Keywords

Search

Quick links