Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Adiponectin mRNA levels in the abdominal adipose depots of nondiabetic women

Abstract

BACKGROUND: The human adiponectin gene has been implicated in the pathophysiology of obesity, type II diabetes mellitus, dyslipidemia and atherosclerosis. Investigation of the physiological functions of the adiponectin gene in humans was mainly conducted at the levels of plasma proteins or DNA polymorphisms. The depot-specific adiponectin mRNA levels also could be relevant to these physiological functions.

OBJECTIVES: The relation between the adipose depot-specific adiponectin mRNA expression levels and various metabolic factors, including BMI, fasting plasma glucose, insulin, triglycerides (TGs) and HDL-cholesterol and insulin resistance index by HOMA, was investigated among 66 nondiabetic women using quantitative real-time PCR.

RESULTS: The subcutaneous relative adiponectin mRNA levels (SRAmR) correlated significantly with the omental relative adiponectin mRNA levels (ORAmR) (γ=0.468, P=0.0001). The SRAmR correlated inversely with the fasting plasma glucose with a borderline significance (γ=−0.35, P=0.058). On the other hand, the ORAmR correlated negatively with serum TG levels with the adjustment for age (γ=−0.33, P=0.007) or age plus BMI (γ=−0.27, P=0.027).

CONCLUSION: These results indicate that the adiponectin mRNA levels in different adipose depots were at least related to certain phenotypes of metabolic syndrome. The expression levels of adiponectin in the omental adipose depots are related to TG metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrell MA . The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 2000; 280: E827–E847.

    Article  Google Scholar 

  2. Havel PJ . Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol 2002; 13: 51–59.

    Article  CAS  Google Scholar 

  3. Zhou YT, Wang ZW, Higa M, Newgard CB, Unger RH . Reversing adipocyte differentiation: implications for treatment of obesity. Proc Natl Acad Sci USA 1999; 96: 2391–2395.

    Article  CAS  Google Scholar 

  4. Harris RB . Leptin-much more than a satiety signal. Annu Rev Nutr 2000; 20: 45–75.

    Article  CAS  Google Scholar 

  5. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y . Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79–83.

    Article  CAS  Google Scholar 

  6. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y . Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.

    Article  CAS  Google Scholar 

  7. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y . Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999; 100: 2473–2476.

    Article  CAS  Google Scholar 

  8. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA . Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–1935.

    Article  CAS  Google Scholar 

  9. Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, Yamauchi T, Otabe S, Okada T, Eto K, Kadowaki H, Hagura R, Akanuma Y, Yazaki Y, Nagai R, Taniyama M, Matsubara K, Yoda M, Nakano Y, Kimura S, Tomita M, Kimura S, Ito C, Froguel P, Kadowaki T . Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002; 51: 536–540.

    Article  CAS  Google Scholar 

  10. Stumvoll M, Tschritter O, Fritsche A, Staiger H, Renn W, Weisser M, Machicao F, Haring H . Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes 2002; 51: 37–41.

    Article  CAS  Google Scholar 

  11. Kondo H, Shimomura I, Matsukawa Y, Kumada M, Takahashi M, Matsuda M, Ouchi N, Kihara S, Kawamoto T, Sumitsuji S, Funahashi T, Matsuzawa Y . Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes 2002; 51: 2325–2328.

    Article  CAS  Google Scholar 

  12. Menzaghi C, Ercolino T, Di Paola R, Berg AH, Warram JH, Scherer PE, Trischitta V, Doria A . A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 2002; 51: 2306–2312.

    Article  CAS  Google Scholar 

  13. Vasseur F, Helbecque N, Dina C, Lobbens S, Delannoy V, Gaget S, Boutin P, Vaxillaire M, Lepretre F, Dupont S, Hara K, Clement K, Bihain B, Kadowaki T, Froguel P . Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet 2002; 11: 2607–2614.

    Article  CAS  Google Scholar 

  14. Hu E, Liang P, Spiegelman BM . AdipoQ is a novel adipocyte-specific gene dysregulated in obesity. J Biol Chem 1996;271: 10697–10703.

    Article  CAS  Google Scholar 

  15. Statnick MA, Beavers LS, Conner LJ, Corominola H, Johnson D, Hammond CD, Rafaeloff-Phail R, Seng T, Suter TM, Sluka JP, Ravussin E, Gadski RA, Caro JF . Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes. Int J Exp Diabetes Res 2000; 1: 81–88.

    Article  CAS  Google Scholar 

  16. Lihn AS, Ostergard T, Nyholm B, Pedersen SB, Richelsen B, Schmitz O . Adiponectin mRNA expression in subcutaneous adipose tissue is reduced in first-degree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab 2002; 284: E443–E448.

    Article  Google Scholar 

  17. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM . Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86: 3815–3819.

    Article  CAS  Google Scholar 

  18. World Health Organization. The Asia-Pacific perspective: redefining obesity and its treatment. WHO: Geneva; 2000.

  19. Huang KC, Chuang LM, Chen CY, Chow SN, Lin RS . Serum leptin and leptin receptor isoforms in omental adipose tissue of nondiabetic women undergoing gynecologic surgery for benign disease. J Formos Med Assoc 2000; 99: 839–843.

    CAS  PubMed  Google Scholar 

  20. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF . Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001; 98: 2005–2010.

    Article  CAS  Google Scholar 

  21. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T . Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  CAS  Google Scholar 

  22. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF . A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270: 26746–26749.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Jao-Ping Wang for her technical assistance. This work was supported in part by a grant from the Ministry of Education (89-B-FA01-1-4) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L-M Chuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, WS., Chen, MH., Lee, WJ. et al. Adiponectin mRNA levels in the abdominal adipose depots of nondiabetic women. Int J Obes 27, 896–900 (2003). https://doi.org/10.1038/sj.ijo.0802367

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802367

Keywords

This article is cited by

Search

Quick links