Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans

Abstract

It is now well established that obesity is an independent risk factor for the development of coronary artery atherosclerosis. The maintenance of vascular homeostasis is critically dependent on the continued integrity of vascular endothelial cell function. A key early event in the development of atherosclerosis is thought to be endothelial cell dysfunction. A primary feature of endothelial cell dysfunction is the reduced bioavailability of the signalling molecule nitric oxide (NO), which has important anti atherogenic properties. Recent studies have produced persuasive evidence showing the presence of endothelial dysfunction in obese humans NO bioavailability is dependent on the balance between its production by a family of enzymes, the nitric oxide synthases, and its reaction with reactive oxygen species. The endothelial isoform (eNOS) is responsible for a significant amount of the NO produced in the vascular wall. NO production can be modulated in both physiological and pathophysiological settings, by regulation of the activity of eNOS at a transcriptional and post-transcriptional level, by substrate and co-factor provision and through calcium dependent and independent signalling pathways. The present review discusses general mechanisms of reduced NO bioavailability including factors determining production of both NO and reactive oxygen species. We then focus on the potential factors responsible for endothelial dysfunction in obesity and possible therapeutic interventions targetted at thses abnormalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hubert HB, Feinleib M, McNamara PM, Castelli WP . Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study Circulation 1983 67: 968–977.

    Article  CAS  PubMed  Google Scholar 

  2. Jousilahti P, Vartiainen E, Tuomilehto J, Puska P . Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14 786 middle-aged men and women in Finland Circulation 1999 99: 1165–1172.

    CAS  PubMed  Google Scholar 

  3. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Monson RR, Speizer FE, Hennekens CH . A prospective study of obesity and risk of coronary heart disease in women New Engl J Med 1990 322: 882–889.

    CAS  PubMed  Google Scholar 

  4. Manson JE, Willett WC, Stampfer MJ, Colditz GA, Hunter DJ, Hankinson SE, Hennekens CH, Speizer FE . Body weight and mortality among women New Engl J Med 1995 333: 677–685.

    CAS  PubMed  Google Scholar 

  5. Willett WC, Manson JE, Stampfer MJ, Colditz GA, Rosner B, Speizer FE, Hennekens CH . Weight, weight change, and coronary heart disease in women. Risk within the ‘normal’ weight range JAMA 1995 273: 461–465.

    CAS  PubMed  Google Scholar 

  6. Wilding J . Science, medicine, and the future. Obesity treatment Br Med J 1997 315: 997–1000.

    CAS  Google Scholar 

  7. Ross R . Atherosclerosis—an inflammatory disease New Engl J Med 1999 340: 115–126.

    Article  CAS  PubMed  Google Scholar 

  8. Palmer RM, Ferrige AG, Moncada S . Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor Nature 1987 327: 524–526.

    CAS  PubMed  Google Scholar 

  9. Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME, D'Angelo DD, Lynch KR, Peach MJ . Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase J Biol Chem 1992 267: 15274–15276.

    CAS  PubMed  Google Scholar 

  10. Cosentino F, Luscher TF . Tetrahydrobiopterin and endothelial function Eur Heart J 1998 19 (Suppl G): G3–8.

    CAS  PubMed  Google Scholar 

  11. Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF . Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein Proc Natl Acad Sci USA 1991 88: 7773–7777.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Marsden PA . Nitric oxide synthases: gene structure and regulation Adv Pharmac 1995 34: 71–90.

    CAS  Google Scholar 

  13. Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, Nerem RM, Alexander RW, Murphy TJ . Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase J Clin Invest 1992 90: 2092–2096.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Awolesi MA, Sessa WC, Sumpio BE . Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells J Clin Invest 1995 96: 1449–1454.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zembowicz A, Tang JL, Wu KK . Transcriptional induction of endothelial nitric oxide synthase type III by lysophosphatidylcholine J Biol Chem 1995 270: 17006–17010.

    CAS  PubMed  Google Scholar 

  16. Hirata K, Miki N, Kuroda Y, Sakoda T, Kawashima S, Yokoyama M . Low concentration of oxidized low-density lipoprotein and lysophosphatidylcholine upregulate constitutive nitric oxide synthase mRNA expression in bovine aortic endothelial cells Circul Res 1995 76: 958–962.

    CAS  Google Scholar 

  17. Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Mostowski H, Quon MJ . Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells Circulation 2000 101: 1539–1545.

    CAS  PubMed  Google Scholar 

  18. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G . Effect of exercise on coronary endothelial function in patients with coronary artery disease New Engl J Med 2000 342: 454–460.

    CAS  PubMed  Google Scholar 

  19. Yoshizumi M, Perrella MA, Burnett JC Jr, Lee ME . Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life Circul Res 1993 73: 205–209.

    CAS  Google Scholar 

  20. Sase K, Michel T . Expression and regulation of endothelial nitric oxide synthase Trends Cardiovasc Med 1997 7: 28–37.

    CAS  PubMed  Google Scholar 

  21. Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M . Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease J Cell Biol 1994 126: 111–126.

    CAS  PubMed  Google Scholar 

  22. Feron O, Saldana F, Michel JB, Michel T . The endothelial nitric-oxide synthase-caveolin regulatory cycle J Biol Chem 1998 273: 3125–3128.

    CAS  PubMed  Google Scholar 

  23. Brouet A, Sonveaux P, Dessy C, Balligand JL, Feron O . Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells J Biol Chem 2001 276: 32663–32669.

    CAS  PubMed  Google Scholar 

  24. Fleming I, Busse R . Signal transduction of eNOS activation Cardiovasc Res 1999 43: 532–541.

    CAS  PubMed  Google Scholar 

  25. Liang P, MacRae TH . Molecular chaperones and the cytoskeleton J Cell Sci 1997 110: 1431–1440.

    CAS  PubMed  Google Scholar 

  26. Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC . Dynamic activation of endothelial nitric oxide synthase by Hsp90 Nature 1998 392: 821–824.

    Article  CAS  PubMed  Google Scholar 

  27. Busse R, Fleming I . Regulation and functional consequences of endothelial nitric oxide formation Ann Med 1995 27: 331–340.

    CAS  PubMed  Google Scholar 

  28. Prabhakar P, Thatte HS, Goetz RM, Cho MR, Golan DE, Michel T . Receptor-regulated translocation of endothelial nitric-oxide synthase J Biol Chem 1998 273: 27383–27388.

    CAS  PubMed  Google Scholar 

  29. Michel T, Feron O . Nitric oxide synthases: which, where, how, and why? J Clin Invest 1997 100: 2146–2152.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM . Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation Nature 1999 399: 601–605.

    CAS  PubMed  Google Scholar 

  31. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC . Regulation of endothelium-derived nitric oxide production by the protein kinase Akt Nature 1999 399: 597–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R . Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells Circul Res 1996 78: 750–758.

    CAS  Google Scholar 

  33. Zeng G, Quon MJ . Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells J Clin Invest 1996 98: 894–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen ZP, Kemp BE, Venema RC . Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation J Biol Chem 2001 276: 16587–16591.

    CAS  PubMed  Google Scholar 

  35. Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de M, ontellano PR, Kemp BE . AMP-activated protein kinase phosphorylation of endothelial NO synthase FEBS Lett 1999 443: 285–289.

    CAS  PubMed  Google Scholar 

  36. Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE . Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase J Biol Chem 2001 276: 17625–17628.

    CAS  PubMed  Google Scholar 

  37. Montagnani M, Chen H, Barr VA, Quon MJ . Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179) J Biol Chem 2001 276: 30392–30398.

    CAS  PubMed  Google Scholar 

  38. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R . Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity Circul Res 2001 88: E68–75.

    CAS  Google Scholar 

  39. Brunner F, Wolkart G, Pfeiffer S, Russell JC, Wascher TC . Vascular dysfunction and myocardial contractility in the JCR:LA-corpulent rat Cardiovasc Res 2000 47: 150–158.

    CAS  PubMed  Google Scholar 

  40. Ridray S . Hyperinsulinemia and smooth muscle cell proliferation Int J Obes Relat Metab Disord 1995 19 (Suppl 1): S39–51.

    PubMed  Google Scholar 

  41. Hsueh WA, Law RE . Insulin signaling in the arterial wall Am J Cardiol 1999 84: 21J–24J.

    CAS  PubMed  Google Scholar 

  42. Laakso M, Edelman SV, Brechtel G, Baron AD . Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance J Clin Invest 1990 85: 1844–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD . Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release J Clin Invest 1994 94: 1172–1179.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Baron AD . Hemodynamic actions of insulin Am J Physiol 1994 267: E187–202.

    CAS  PubMed  Google Scholar 

  45. Laakso M, Edelman SV, Brechtel G, Baron AD . Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM Diabetes 1992 41: 1076–1083.

    CAS  PubMed  Google Scholar 

  46. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P . Nitric oxide release accounts for insulin's vascular effects in humans J Clin Invest 1994 94: 2511–2515.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kearney MT, Cowley AJ, Stubbs TA, Macdonald IA . Effect of a physiological insulin infusion on the cardiovascular responses to a high fat meal: evidence supporting a role for insulin in modulating postprandial cardiovascular homoeostasis in man Clin Sci (Colch) 1996 91: 415–423.

    CAS  Google Scholar 

  48. Kearney MT, Cowley AJ, Stubbs TA, Evans A, Macdonald IA . Depressor action of insulin on skeletal muscle vasculature: a novel mechanism for postprandial hypotension in the elderly J Am Coll Cardiol 1998 31: 209–216.

    CAS  PubMed  Google Scholar 

  49. Scherrer U, Sartori C . Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity Circulation 1997 96: 4104–4113.

    CAS  PubMed  Google Scholar 

  50. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD . Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance J Clin Invest 1996 97: 2601–2610.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sowers JR . Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology Hypertension 1997 29: 691–699.

    CAS  PubMed  Google Scholar 

  52. Cardillo C, Nambi SS, Kilcoyne CM, Choucair WK, Katz A, Quon MJ, Panza JA . Insulin stimulates both endothelin and nitric oxide activity in the human forearm Circulation 1999 100: 820–825.

    CAS  PubMed  Google Scholar 

  53. Cardillo C, Kilcoyne CM, Nambi SS, Cannon RO III, Quon MJ, Panza JA . Vasodilator response to systemic but not to local hyperinsulinemia in the human forearm Hypertension 1998 32: 740–745.

    CAS  PubMed  Google Scholar 

  54. Hasdai D, Rizza RA, Holmes DR Jr, Richardson DM, Cohen P, Lerman A . Insulin and insulin-like growth factor-I cause coronary vasorelaxation in vitro Hypertension 1998 32: 228–234.

    CAS  PubMed  Google Scholar 

  55. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL . Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin Circulation 2000 101: 676–681.

    CAS  PubMed  Google Scholar 

  56. Itani SI, Zhou Q, Pories WJ, MacDonald KG, Dohm GL . Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity Diabetes 2000 49: 1353–1358.

    CAS  PubMed  Google Scholar 

  57. Moncada S, Higgs A . The L-arginine—nitric oxide pathway New Engl J Med 1993 329: 2002–2012.

    CAS  PubMed  Google Scholar 

  58. Vallance P, Collier J, Moncada S . Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man Lancet 1989 2: 997–1000.

    CAS  PubMed  Google Scholar 

  59. Cannon RO III . Role of nitric oxide in cardiovascular disease: focus on the endothelium Clin Chem 1998 44: 1809–1819.

    CAS  PubMed  Google Scholar 

  60. Tsao PS, McEvoy LM, Drexler H, Butcher EC, Cooke JP . Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine Circulation 1994 89: 2176–2182.

    CAS  PubMed  Google Scholar 

  61. Cayatte AJ, Palacino JJ, Horten K, Cohen RA . Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits Arterioscler Thromb 1994 14: 753–759.

    CAS  PubMed  Google Scholar 

  62. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK . Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide select-ively reduces endothelial expression of adhesion molecules and proinflammatory cytokines J Clin Invest 1995 96: 60–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cooke JP, Tsao PS . Arginine: a new therapy for atherosclerosis? Circulation 1997 95: 311–312.

    CAS  PubMed  Google Scholar 

  64. Peng HB, Libby P, Liao JK . Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B J Biol Chem 1995 270: 14214–14219.

    CAS  PubMed  Google Scholar 

  65. Kariya K, Kawahara Y, Araki S, Fukuzaki H, Takai Y . Antiproliferative action of cyclic GMP-elevating vasodilators in cultured rabbit aortic smooth muscle cells Atherosclerosis 1989 80: 143–147.

    CAS  PubMed  Google Scholar 

  66. Tanner FC, Meier P, Greutert H, Champion C, Nabel EG, Luscher TF . Nitric oxide modulates expression of cell cycle regulatory proteins: a cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation Circulation 2000 101: 1982–1989.

    CAS  PubMed  Google Scholar 

  67. Drexler H . Nitric oxide and coronary endothelial dysfunction in humans Cardiovasc Res 1999 43: 572–579.

    CAS  PubMed  Google Scholar 

  68. Harrison DG . Cellular and molecular mechanisms of endothelial cell dysfunction J Clin Invest 1997 100: 2153–2157.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. John S, Schmieder RE . Impaired endothelial function in arterial hypertension and hypercholesterolemia: potential mechanisms and differences J Hypertens 2000 18: 363–374.

    CAS  PubMed  Google Scholar 

  70. Toporsian M, Govindaraju K, Nagi M, Eidelman D, Thibault G, Ward ME . Downregulation of endothelial nitric oxide synthase in rat aorta after prolonged hypoxia in vivo Circul Res 2000 86: 671–675.

    CAS  Google Scholar 

  71. Tsutsui M, Shimokawa H, Tanaka S, Kuwaoka I, Hase K, Nogami N, Nakanishi K, Okamatsu S . Endothelial Gi protein in human coronary arteries Eur Heart J 1994 15: 1261–1266.

    CAS  PubMed  Google Scholar 

  72. Liao JK, Clark SL . Regulation of G-protein alpha i2 subunit expression by oxidized low-density lipoprotein J Clin Invest 1995 95: 1457–1463.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rabini RA, Cester N, Staffolani R, Salvolini E, Moretti N, Vignini A, Fumelli D, Mazzanti L . Modifications induced by LDL from type 1 diabetic patients on endothelial cells obtained from human umbilical vein Diabetes 1999 48: 2221–2228.

    CAS  PubMed  Google Scholar 

  74. Bode-Boger SM, Boger RH, Kienke S, Junker W, Frolich JC . Elevated L-arginine/dimethylarginine ratio contributes to enhanced systemic NO production by dietary L-arginine in hypercholesterolemic rabbits Biochem Biophys Res Commun 1996 219: 598–603.

    CAS  PubMed  Google Scholar 

  75. Cooke JP . Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 2000 20: 2032–2037.

    CAS  PubMed  Google Scholar 

  76. Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP . Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase Circulation 1999 99: 3092–3095.

    CAS  PubMed  Google Scholar 

  77. Boger RH, Bode-Boger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, Blaschke TF, Cooke JP . Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia Circulation 1998 98: 1842–1847.

    CAS  PubMed  Google Scholar 

  78. Cosentino F, Patton S, d'Uscio LV, Werner ER, Werner-Felmayer G, Moreau P, Malinski T, Luscher TF . Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats J Clin Invest 1998 101: 1530–1537.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, Tarpey M, Fukai T, Harrison DG . Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin Circulation 2001 103: 1282–1288.

    CAS  PubMed  Google Scholar 

  80. Zalba G, Beaumont J, San Jose G, Fortuno A, Fortuno MA, Diez J . Vascular oxidant stress: molecular mechanisms and pathophysiological implications J Physiol Biochem 2000 56: 57–64.

    CAS  PubMed  Google Scholar 

  81. Patel RP, Levonen A, Crawford JH, Darley-Usmar VM . Mechanisms of the pro- and anti-oxidant actions of nitric oxide in atherosclerosis Cardiovascular Res 2000 47: 465–474.

    CAS  Google Scholar 

  82. Kojda G, Harrison D . Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure Cardiovasc Res 1999 43: 562–571.

    CAS  PubMed  Google Scholar 

  83. Hamilton CA, Berg G, McIntyre M, McPhaden AR, Reid JL, Dominiczak AF . Effects of nitric oxide and superoxide on relaxation in human artery and vein Atherosclerosis 1997 133: 77–86.

    CAS  PubMed  Google Scholar 

  84. Bloodsworth A, O'Donnell VB, Freeman BA . Nitric oxide regulation of free radical- and enzyme-mediated lipid and lipoprotein oxidation Arterioscler Thromb Vasc Biol 2000 20: 1707–1715.

    CAS  PubMed  Google Scholar 

  85. Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M, Heitzer T, Stasch JP, Griendling KK, Harrison DG, Bohm M, Meinertz T, Munzel T . Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin–angiotensin system Circulation 1999 99: 2027–2033.

    CAS  PubMed  Google Scholar 

  86. Laight DW, Carrier MJ, Anggard EE . Antioxidants, diabetes and endothelial dysfunction Cardiovasc Res 2000 47: 457–464.

    CAS  PubMed  Google Scholar 

  87. Cai H, Harrison DG . Endothelial dysfunction in cardio-vascular diseases: the role of oxidant stress Circul Res 2000 87: 840–844.

    CAS  Google Scholar 

  88. Azumi H, Inoue N, Takeshita S, Rikitake Y, Kawashima S, Hayashi Y, Itoh H, Yokoyama M . Expression of NADH/NADPH oxidase p22phox in human coronary arteries Circulation 1999 100: 1494–1498.

    CAS  PubMed  Google Scholar 

  89. Cahilly C, Ballantyne CM, Lim DS, Gotto A, Marian AJ . A variant of p22(phox), involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis Circul Res 2000 86: 391–395.

    CAS  Google Scholar 

  90. Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers QT, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK . p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats Circul Res 1997 80: 45–51.

    CAS  Google Scholar 

  91. Griendling KK, Sorescu D, Ushio-Fukai M . NAD(P)H oxidase: role in cardiovascular biology and disease Circul Res 2000 86: 494–501.

    CAS  Google Scholar 

  92. Linz W, Wohlfart P, Scholkens BA, Malinski T, Wiemer G . Interactions among ACE, kinins and NO Cardiovasc Res 1999 43: 549–561.

    CAS  PubMed  Google Scholar 

  93. Fernandez-Alfonso MS, Gonzalez C . Nitric oxide and the renin-angiotensin system. Is there a physiological interplay between the systems? J Hypertens 1999 17: 1355–1361.

    CAS  PubMed  Google Scholar 

  94. Ackermann A, Fernandez-Alfonso MS, Sanchez de Rojas R, Ortega T, Paul M, Gonzalez C . Modulation of angiotensin-converting enzyme by nitric oxide Br J Pharmac 1998 124: 291–298.

    CAS  Google Scholar 

  95. Takemoto M, Egashira K, Usui M, Numaguchi K, Tomita H, Tsutsui H, Shimokawa H, Sueishi K, Takeshita A . Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats J Clin Invest 1997 99: 278–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. O'Rahilly S . Science, medicine, and the future. Non-insulin dependent diabetes mellitus: the gathering storm Br Med J 1997 314: 955–959.

    CAS  Google Scholar 

  97. Pyorala M, Miettinen H, Laakso M, Pyorala K . Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study Circulation 1998 98: 398–404.

    CAS  PubMed  Google Scholar 

  98. Howard G, O'Leary DH, Zaccaro D, Haffner S, Rewers M, Hamman R, Selby JV, Saad MF, Savage P, Bergman R . Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators Circulation 1996 93: 1809–1817.

    CAS  PubMed  Google Scholar 

  99. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M . Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction New Engl J Med 1998 339: 229–234.

    CAS  PubMed  Google Scholar 

  100. Laine H, Yki-Jarvinen H, Kirvela O, Tolvanen T, Raitakari M, Solin O, Haaparanta M, Knuuti J, Nuutila P . Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity J Clin Invest 1998 101: 1156–1162.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, Jacob S, Matthaei S, Rett K, Haring HU . Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance Circulation 2000 101: 1780–1784.

    CAS  PubMed  Google Scholar 

  102. Petrie JR, Ueda S, Webb DJ, Elliott HL, Connell JM . Endothelial nitric oxide production and insulin sensitivity. A physiological link with implications for pathogenesis of cardiovascular disease Circulation 1996 93: 1331–1333.

    CAS  PubMed  Google Scholar 

  103. Katakam PV, Ujhelyi MR, Hoenig ME, Miller AW . Endothelial dysfunction precedes hypertension in diet-induced insulin resistance Am J Physiol 1998 275: R788–792.

    CAS  PubMed  Google Scholar 

  104. Abe H, Yamada N, Kamata K, Kuwaki T, Shimada M, Osuga J, Shionoiri F, Yahagi N, Kadowaki T, Tamemoto H, Ishibashi S, Yazaki Y, Makuuchi M . Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1 J Clin Invest 1998 101: 1784–1788.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Arcaro G, Zamboni M, Rossi L, Turcato E, Covi G, Armellini F, Bosello O, Lechi A . Body fat distribution predicts the degree of endothelial dysfunction in uncomplicated obesity Int J Obes Relat Metab Disord 1999 23: 936–942.

    CAS  PubMed  Google Scholar 

  106. Tack CJ, Ong MK, Lutterman JA, Smits P . Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone Diabetologia 1998 41: 569–576.

    CAS  PubMed  Google Scholar 

  107. Westerbacka J, Vehkavaara S, Bergholm R, Wilkinson I, Cockcroft J, Yki-Jarvinen H . Marked resistance of the ability of insulin to decrease arterial stiffness characterizes human obesity Diabetes 1999 48: 821–827.

    CAS  PubMed  Google Scholar 

  108. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM . Influence of body fat distribution on free fatty acid metabolism in obesity J Clin Invest 1989 83: 1168–1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, Bayazeed B, Baron AD . Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation J Clin Invest 1997 100: 1230–1239.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lundman P, Eriksson M, Schenck-Gustafsson K, Karpe F, Tornvall P . Transient triglyceridemia decreases vascular reactivity in young, healthy men without risk factors for coronary heart disease Circulation 1997 96: 3266–3268.

    CAS  PubMed  Google Scholar 

  111. de Kreutzenberg SV, Crepaldi C, Marchetto S, Calo L, Tiengo A, Del Prato S, Avogaro A . Plasma free fatty acids and endothelium-dependent vasodilation: effect of chain-length and cyclooxygenase inhibition J Clin Endocrinol Metab 2000 85: 793–798.

    CAS  PubMed  Google Scholar 

  112. de Man FH, Weverling-Rijnsburger AW, van der Laarse A, Smelt AH, Jukema JW, Blauw GJ . Not acute but chronic hypertriglyceridemia is associated with impaired endothelium-dependent vasodilation: reversal after lipid-lowering therapy by atorvastatin Arterioscler Thromb Vasc Biol 2000 20: 744–750.

    CAS  PubMed  Google Scholar 

  113. Davda RK, Stepniakowski KT, Lu G, Ullian ME, Goodfriend TL, Egan BM . Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism Hypertension 1995 26: 764–770.

    CAS  PubMed  Google Scholar 

  114. Lu G, Greene EL, Nagai T, Egan BM . Reactive oxygen species are critical in the oleic acid-mediated mitogenic signaling pathway in vascular smooth muscle cells Hypertension 1998 32: 1003–1010.

    CAS  PubMed  Google Scholar 

  115. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW . C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999 19: 972–978.

    CAS  PubMed  Google Scholar 

  116. Schachinger V, Britten MB, Zeiher AM . Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease Circulation 2000 101: 1899–1906.

    CAS  PubMed  Google Scholar 

  117. Winkler G, Lakatos P, Salamon F, Nagy Z, Speer G, Kovacs M, Harmos G, Dworak O, Cseh K . Elevated serum TNF-alpha level as a link between endothelial dysfunction and insulin resistance in normotensive obese patients Diabetes Med 1999 16: 207–211.

    CAS  Google Scholar 

  118. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM . IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance Science 1996 271: 665–668.

    CAS  PubMed  Google Scholar 

  119. Hauner H, Petruschke T, Russ M, Rohrig K, Eckel J . Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture Diabetologia 1995 38: 764–771.

    CAS  PubMed  Google Scholar 

  120. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK . Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle Biochem J 1998 329: 653–657.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans New Engl J Med 1996 334: 292–295.

    CAS  PubMed  Google Scholar 

  122. Bouloumie A, Drexler HC, Lafontan M, Busse R . Leptin, the product of Ob gene, promotes angiogenesis Circul Res 1998 83: 1059–1066.

    CAS  Google Scholar 

  123. Bouloumie A, Marumo T, Lafontan M, Busse R . Leptin induces oxidative stress in human endothelial cells FASEB J 1999 13: 1231–1238.

    CAS  PubMed  Google Scholar 

  124. Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzman M, Brownlee M . Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A J Biol Chem 2001 276: 25096–25100.

    CAS  PubMed  Google Scholar 

  125. Lembo G, Vecchione C, Fratta L, Marino G, Trimarco V, d'Amati G, Trimarco B . Leptin induces direct vasodilation through distinct endothelial mechanisms Diabetes 2000 49: 293–297.

    CAS  PubMed  Google Scholar 

  126. James RW, Brulhart-Meynet MC, Lehmann T, Golay A . Lipoprotein distribution and composition in obesity: their association with central adiposity Int J Obes Relat Metab Disord 1997 21: 1115–1120.

    CAS  PubMed  Google Scholar 

  127. Tack CJ, Smits P, Demacker PN, Stalenhoef AF . Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects Diabetes Care 1998 21: 796–799.

    CAS  PubMed  Google Scholar 

  128. McNeill KL, Fontana L, Russell-Jones DL, Rajman I, Ritter JM, Chowienczyk PJ . Inhibitory effects of low-density lipoproteins from men with type II diabetes on endothelium-dependent relaxation J Am Coll Cardiol 2000 35: 1622–1627.

    CAS  PubMed  Google Scholar 

  129. Vergnani L, Hatrik S, Ricci F, Passaro A, Manzoli N, Zuliani G, Brovkovych V, Fellin R, Malinski T . Effect of native and oxidized low-density lipoprotein on endothelial nitric oxide and superoxide production: key role of L-arginine availability Circulation 2000 101: 1261–1266.

    CAS  PubMed  Google Scholar 

  130. Rainwater DL, Mitchell BD, Comuzzie AG, Haffner SM . Relationship of low-density lipoprotein particle size and measures of adiposity Int J Obes Relat Metab Disord 1999 23: 180–189.

    CAS  PubMed  Google Scholar 

  131. Hardman AE . Physical activity, obesity and blood lipids Int J Obes Relat Metab Disord 1999 23 (Suppl 3): S64–71.

    CAS  PubMed  Google Scholar 

  132. Watts GF, Herrmann S, Riches FM . Effects of diet and serotonergic agonist on hepatic apolipoprotein B-100 secretion and endothelial function in obese men Q J Med 2000 93: 153–161.

    CAS  Google Scholar 

  133. Giacchetti G, Faloia E, Sardu C, Camilloni MA, Mariniello B, Gatti C, Garrapa GG, Guerrieri M, Mantero F . Gene expression of angiotensinogen in adipose tissue of obese patients Int J Obes Relat Metab Disord 2000 24 (Suppl 2): S142–143.

    CAS  PubMed  Google Scholar 

  134. Tuck ML, Sowers J, Dornfeld L, Kledzik G, Maxwell M . The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients New Engl J Med 1981 304: 930–933.

    CAS  PubMed  Google Scholar 

  135. Hennes MM, O'Shaughnessy IM, Kelly TM, LaBelle P, Egan BM, Kissebah AH . Insulin-resistant lipolysis in abdominally obese hypertensive individuals. Role of the renin-angiotensin system Hypertension 1996 28: 120–126.

    CAS  PubMed  Google Scholar 

  136. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG . Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone J Clin Invest 1996 97: 1916–1923.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Jones BH, Standridge MK, Moustaid N . Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells Endocrinology 1997 138: 1512–1519.

    CAS  PubMed  Google Scholar 

  138. Vanhoutte PM . Endothelial dysfunction and inhibition of converting enzyme Eur Heart J 1998 19 (Suppl J): J7–15.

    CAS  PubMed  Google Scholar 

  139. Pitt B . The potential use of angiotensin-converting enzyme inhibitors in patients with hyperlipidemia Am J Cardiol 1997 79: 24–28.

    CAS  PubMed  Google Scholar 

  140. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G . Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators New Engl J Med 2000 342: 145–153.

    CAS  PubMed  Google Scholar 

  141. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group Lancet 1998 352: 837–853.

  142. Katakam PV, Ujhelyi MR, Hoenig M, Miller AW . Metformin improves vascular function in insulin-resistant rats Hypertension 2000 35: 108–112.

    CAS  PubMed  Google Scholar 

  143. Day C . Thiazolidinediones: a new class of antidiabetic drugs Diabetes Med 1999 16: 179–192.

    CAS  Google Scholar 

  144. Murase K, Odaka H, Suzuki M, Tayuki N, Ikeda H . Pioglitazone time-dependently reduces tumour necrosis factor-alpha level in muscle and improves metabolic abnormalities in Wistar fatty rats Diabetologia 1998 41: 257–264.

    CAS  PubMed  Google Scholar 

  145. Aengevaeren WR . Beyond lipids—the role of the endothelium in coronary artery disease Atherosclerosis 1999 147 (Suppl 1): S11–16.

    CAS  PubMed  Google Scholar 

  146. Laufs U, Liao JK . Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase J Biol Chem 1998 273: 24266–24271.

    CAS  PubMed  Google Scholar 

  147. Parthasarathy S, Santanam N . Mechanisms of oxidation, antioxidants, and atherosclerosis Curr Opin Lipidol 1994 5: 371–375.

    CAS  PubMed  Google Scholar 

  148. Britten MB, Zeiher AM, Schachinger V . Clinical importance of coronary endothelial vasodilator dysfunction and therapeutic options J Intern Med 1999 245: 315–327.

    CAS  PubMed  Google Scholar 

  149. Aminbakhsh A, Mancini J . Chronic antioxidant use and changes in endothelial dysfunction: a review of clinical investigations Can J Cardiol 1999 15: 895–903.

    CAS  PubMed  Google Scholar 

  150. Hirashima O, Kawano H, Motoyama T, Hirai N, Ohgushi M, Kugiyama K, Ogawa H, Yasue H . Improvement of endothelial function and insulin sensitivity with vitamin C in patients with coronary spastic angina: possible role of reactive oxygen species J Am Coll Cardiol 2000 35: 1860–1866.

    CAS  PubMed  Google Scholar 

  151. Patterson C, Madamanchi NR, Runge MS . The oxidative paradox: another piece in the puzzle Circul Res 2000 87: 1074–1076.

    CAS  Google Scholar 

Download references

Acknowledgements

ILW and SBW are British Heart Foundation Junior Research Fellows, AMS holds the British Heart Foundation Chair of Cardiology at King's College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to IL Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, I., Wheatcroft, S., Shah, A. et al. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes 26, 754–764 (2002). https://doi.org/10.1038/sj.ijo.0801995

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801995

Keywords

This article is cited by

Search

Quick links