Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues

Abstract

Embryonic stem cells unlike most adult stem cell populations can replicate indefinitely while preserving genetic, epigenetic, mitochondrial and functional profiles. ESCs are therefore an excellent candidate cell type for providing a bank of cells for allogenic therapy and for introducing targeted genetic modifications for therapeutic intervention. This ability of prolonged self-renewal of stem cells and the unique advantages that this offers for gene therapy, discovery efforts, cell replacement, personalized medicine and other more direct applications requires the resolution of several important manufacturing, gene targeting and regulatory issues. In this review, we assess some of the advance made in developing scalable culture systems, improvement in vector design and gene insertion technology and the changing regulatory landscape.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Zeng X, Rao MS . Embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience 2007; 145: 1348–1358.

    Article  CAS  Google Scholar 

  2. Allegrucci C, Young LE . Differences between human embryonic stem cell lines. Hum Reprod Update 2007; 13: 103–120.

    Article  CAS  Google Scholar 

  3. Strulovici Y, Leopold PL, O'Connor TP, Pergolizzi RG, Crystal RG . Human embryonic stem cells and gene therapy. Mol Ther 2007; 15: 850–866.

    Article  CAS  Google Scholar 

  4. Carpenter MK, Rosler E, Rao MS . Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 2003; 5: 79–88.

    Article  CAS  Google Scholar 

  5. Mallon BS, Park KY, Chen KG, Hamilton RS, McKay RD . Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol 2006; 38: 1063–1075.

    Article  CAS  Google Scholar 

  6. Andrews PW, Benvenisty N, McKay R, Pera MF, Rossant J, Semb H et al. Steering Committee of the International Stem Cell Initiative. The International Stem Cell Initiative: toward benchmarks for human embryonic stem cell research. Nat Biotechnol 2005; 23: 795–797.

    Article  CAS  Google Scholar 

  7. Pyle AD, Lock LF, Donovan PJ . Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 2006; 24: 344–350.

    Article  CAS  Google Scholar 

  8. Ellerstrom C, Strehl R, Noaksson K, Hyllner J, Semb H . Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells 2007; 25: 1690–1696.

    Article  Google Scholar 

  9. Xu C, Police S, Rao N, Carpenter MK . Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 2002; 91: 501–508.

    Article  CAS  Google Scholar 

  10. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS . Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 2001; 172: 383–397.

    Article  CAS  Google Scholar 

  11. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005; 25: 4694–4705.

    Article  CAS  Google Scholar 

  12. Wilson PG, Stice SS . Development and differentiation of neural rosettes derived from human embryonic stem cells. Stem Cell Rev 2007; 2: 67–77.

    Article  Google Scholar 

  13. Carpenter M, Rao MS, Freed W, Zeng X . Derivation and characterization of neuronal precursors and dopaminergic neurons from human embryonic stem cells in vitro. Methods Mol Biol 2006; 331: 153–167.

    PubMed  Google Scholar 

  14. Filipczyk AA, Passier R, Rochat A, Mummery CL . Cardiovascular development: towards biomedical applicability: regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci 2007; 64: 704–718.

    Article  CAS  Google Scholar 

  15. Lees JG, Tuch BE . Conversion of embryonic stem cells into pancreatic beta-cell surrogates guided by ontogeny. Regen Med 2006; 1: 327–336.

    Article  CAS  Google Scholar 

  16. Reems JA, Fujita D, Tyler T, Moldwin R, Smith SD . Obtaining an accepted investigational new drug application to operate an umbilical cord blood bank. Transfusion 1999; 39: 357–363.

    Article  CAS  Google Scholar 

  17. Loring JF, Rao MS . Establishing standards for the characterization of human embryonic stem cell lines. Stem Cells 2006; 24: 145–150.

    Article  Google Scholar 

  18. Bondanza A, Ciceri F, Bonini C . Application of donor lymphocytes expressing a suicide gene for early GVL induction and later control of GVH reactions after bone-marrow transplantation. Methods Mol Med 2005; 109: 475–486.

    CAS  PubMed  Google Scholar 

  19. Bonini C, Bondanza A, Perna SK, Kaneko S, Traversari C, Ciceri F et al. The suicide gene therapy challenge: how to improve a successful gene therapy approach. Mol Ther 2007; 15: 1248–1252.

    Article  CAS  Google Scholar 

  20. Wiley RG . Targeting toxins to neural antigens and receptors. Methods Mol Biol 2001; 166: 267–276.

    CAS  PubMed  Google Scholar 

  21. Ren X, Tahimic CG, Katoh M, Kurimasa A, Inoue T, Oshimura M . Human artificial chromosome vectors meet stem cells: new prospects for gene delivery. Stem Cell Rev 2006; 2: 43–50.

    CAS  PubMed  Google Scholar 

  22. Pochampally RR, Horwitz EM, DiGirolamo CM, Stokes DS, Prockop DJ . Correction of a mineralization defect by overexpression of a wild-type cDNA for COL1A1 in marrow stromal cells (MSCs) from a patient with osteogenesis imperfecta: a strategy for rescuing mutations that produce dominant-negative protein defects. Gene Therapy 2005; 12: 1119–1125.

    Article  CAS  Google Scholar 

  23. Zwaka TP, Thomson JA . Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003; 21: 319–321.

    Article  CAS  Google Scholar 

  24. Urbach A, Schuldiner M, Benvenisty N . Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 2004; 22: 635–641.

    Article  CAS  Google Scholar 

  25. Liu Y, Song Z, Zhao Y, Qin H, Cai J, Zhang H et al. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun 2006; 346: 131–139.

    Article  CAS  Google Scholar 

  26. Lu J, Hou R, Booth CJ, Yang SH, Snyder M . Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci USA 2006; 103: 5688–5693.

    Article  CAS  Google Scholar 

  27. Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 2006; 103: 6907–6912.

    Article  CAS  Google Scholar 

  28. Stewart MH, Bosse M, Chadwick K, Menendez P, Bendall SC, Bhatia M . Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nat Methods 2006; 3: 807–815.

    Article  CAS  Google Scholar 

  29. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646–651.

    Article  CAS  Google Scholar 

  30. Moehle EA, Rock JM, Lee YL, Jouvenot Y, Dekelver RC, Gregory PD et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 2007; 104: 3055–3060.

    Article  CAS  Google Scholar 

  31. Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP . Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 2001; 21: 3926–3934.

    Article  CAS  Google Scholar 

  32. Belteki G, Gertsenstein M, Ow DW, Nagy A . Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 2003; 21: 321–324.

    Article  CAS  Google Scholar 

  33. Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA . Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 2007; 17: 1077–1094.

    Article  Google Scholar 

  34. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z . Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 1997; 91: 501–510.

    Article  CAS  Google Scholar 

  35. Fischer SE, Wienholds E, Plasterk RH . Regulated transposition of a fish transposon in the mouse germ line. Proc Natl Acad Sci USA 2001; 98: 6759–6764.

    Article  CAS  Google Scholar 

  36. Hackett PB, Ekker SC, Largaespada DA, McIvor RS . Sleeping beauty transposon mediated gene therapy for prolonged expression. Adv Genet 2005; 54: 189–232.

    Article  CAS  Google Scholar 

  37. Wilson MH, Coates CJ, George Jr AL . PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 2007; 15: 139–145.

    Article  CAS  Google Scholar 

  38. Loring JF, Rao MS . Establishing standards for the characterization of human embryonic stem cell lines. Stem Cells 2006; 24: 145–150.

    Article  Google Scholar 

  39. Zeng X, Rao MS . The therapeutic potential of embryonic stem cells: a focus on stem cell stability. Curr Opin Mol Ther 2006; 8: 338–344.

    PubMed  Google Scholar 

  40. Ginis I, Rao MS . Toward cell replacement therapy: promises and caveats. Exp Neurol 2003; 184: 61–77.

    Article  CAS  Google Scholar 

  41. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet 2005; 37: 1099–1103.

    Article  CAS  Google Scholar 

  42. Hentze H, Graichen R, Colman A . Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol 2007; 25: 24–32.

    Article  CAS  Google Scholar 

  43. Okita K, Ichisaka T, Yamanaka S . Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313–317.

    Article  CAS  Google Scholar 

  44. Meissner A, Wernig M, Jaenisch R . Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007; 25: 1177–1181.

    Article  CAS  Google Scholar 

  45. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2004; 119: 1001–1012.

    Article  CAS  Google Scholar 

  46. Kerr CL, Shamblott MJ, Gearhart JD . Pluripotent stem cells from germ cells. Methods Enzymol 2006; 419: 400–426.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, M. Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues. Gene Ther 15, 82–88 (2008). https://doi.org/10.1038/sj.gt.3303061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303061

Keywords

This article is cited by

Search

Quick links