Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Successful in vivo tumor targeting of prostate-specific membrane antigen with a highly efficient J591/PEI/DNA molecular conjugate

Abstract

We have utilized a novel polyethylenimine (PEI)/DNA-βgal vector to investigate the specificity and efficiency of immuno-targeting prostate-specific membrane antigen (PSMA). Coupling of the PSMA-specific monoclonal antibody, J591, to the vector was facilitated via the high-affinity interaction between phenyl(di)boronic acid and salicylhydroxamic acid molecules. Highly efficient gene delivery by this prostate cancer (PCA)-targeted J591/polyethylene glycol (PEG)/PEI/DNA-βgal vector was demonstrated in PSMA-positive cells relative to controls, resulting in significant growth inhibition in vitro when the J591/PEG/PEI/DNA-p53 was used. Competition with free antibody resulted in about 90% reduction in both J591 internalization and βgal gene delivery, indicating specificity for PSMA-positive cells. More importantly, testing the efficiency of the J591/PEG/PEI/DNA-βgal targeting vector in an orthotopic PCA model in nude mice resulted in up to a 20-fold increase in gene delivery over the untargeted vector controls. The in vivo organ distribution profile also revealed βgal expression predominantly in the tumor, which was more than 1 log higher than the next highest level of expression in the lung. Furthermore, with the targeted vector containing the gene for yellow fluorescent protein or biotinylated J591, we further demonstrate in vivo that vector-mediated gene delivery is specific for both tumor cells and tumor-associated neovasculature in PSMA-positive tumors. These results suggest the potential for further optimization of this novel vector in the context of therapeutic gene delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Verma IM, Somia N . Gene therapy – promises, problems and prospects. Nature 1997; 389: 239–242.

    Article  CAS  Google Scholar 

  2. Luo D, Saltzman M . Synthetic DNA delivery systems. Nat Biotech 2000; 18: 33–37.

    Article  CAS  Google Scholar 

  3. Luo D . A new solution for improving gene delivery. Trends Biotech 2004; 22: 101–103.

    Article  CAS  Google Scholar 

  4. Putnam D, Gentry CA, Pack DW, Langer R . Polymer-based gene delivery with low toxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 2001; 98: 1200–1205.

    Article  CAS  Google Scholar 

  5. Rochlitz CF . Gene therapy of cancer. Swiss Med Wkly 2001; 131: 4–9.

    CAS  PubMed  Google Scholar 

  6. Brown MD, Schatzlein AG, Uchegbu IF . Gene delivery with synthetic (non viral) carriers – progress and problems. Int J Pharm 2001; 229: 1–21.

    Article  CAS  Google Scholar 

  7. Liu F, Huang L . Development of non-viral vectors for systemic gene delivery. J Control Rel 2002; 78: 259–266.

    Article  CAS  Google Scholar 

  8. Boussif O, Zanta MA, Behr J-P . Optimized galenics improve in vitro transfer with cationic molecules up to a thousand-fold. Gene Therapy 1996; 3: 1074–1080.

    CAS  Google Scholar 

  9. Abdallah B, Hassan A, Benoist G, Goula D, Behr JP, Demeneix BA . A powerful non viral vector for in vivo gene transfer into the adult mammalian brain. Hum Gene Ther 1996; 20: 1947–1954.

    Article  Google Scholar 

  10. Coll JL, Chollet P, Brambilla E, Desplanques D, Behr JP, Favrot M . In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum Gene Ther 1999; 10: 1659–1666.

    Article  CAS  Google Scholar 

  11. Rubanyi GM . The future of human gene therapy. Mol Aspects Med 2001; 89: 21–39.

    Google Scholar 

  12. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C . Prostate specific membrane antigen expression in normal and malignant human tissues. Clin Can Res 1997; 3: 81–85.

    CAS  Google Scholar 

  13. O'keefe DS, Uchida A, Bacich DJ, Watt FB, Martorana A, Molloy PL et al. Prostate-specific suicide gene therapy using the prostate-specific membrane antigen promoter and enhancer. Prostate 2000; 45: 149–157.

    Article  CAS  Google Scholar 

  14. Horoszewicz JS, Kawinski E, Murphy GP . Monoclonal antibodies to a new antigenic marker in epithelial prostate cells and serum of prostatic cancer patients. Anticancer Res 1987; 7: 927–936.

    CAS  PubMed  Google Scholar 

  15. Lapidus RG, Tiffany CW, Isaacs JT, Slusher BS . Prostate specific membrane antigen enzyme activity is elevated in prostate cancer cells. Prostate 2000; 45: 350–354.

    Article  CAS  Google Scholar 

  16. Wright GL, Haley C, Beckett ML, Schellhammer PF . Expression of prostate specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol 1995; 1: 18–28.

    Article  Google Scholar 

  17. Noss KR, Wolfe SA, Grimes SR . Up-regulation of prostate specific membrane antigen/folate hydrolase transcription by an enhancer. Gene 2002; 285: 247–256.

    Article  CAS  Google Scholar 

  18. Chang SS, Reuter VF, Heston WD, Bander NH, Grauer LS, Gaudin PB . Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 1999; 59: 3192–3198.

    CAS  Google Scholar 

  19. Liu H, Rajasekaran AK, Moy P, Xia Y, Kim S, Navarro V et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res 1998; 58: 4055–4060.

    CAS  PubMed  Google Scholar 

  20. Wiley JP, Hughes KA, Kaiser RJ, Kesicki EA, Lund KP, Stolowitz ML . Phenylboronic acid–salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography. Bioconjugate Chem 2001; 12: 240–250.

    Article  CAS  Google Scholar 

  21. Stolowitz ML, Ahlem C, Hughes KA, Kaiser RJ, Kesicki EA, Li G et al. Phenylboronic acid–salicylhydroxamic acid bioconjugates. 1. A novel boronic acid complex for protein immobilization. Bioconjugate Chem 2001; 12: 229–239.

    Article  CAS  Google Scholar 

  22. Moffatt S, Wiehle S, Cristiano RJ . Tumor-specific gene delivery mediated by a novel peptide-polyethylenimine–DNA polyplex targeting aminopeptidase N (CD13). Hum Gene Ther 2005; 16: 57–67.

    Article  CAS  Google Scholar 

  23. Fronsdal K, Engedal N, Saatcioglu F . Eficient DNA-mediated gene transfer into prostate cancer cell line LnCap. Prostate 2000; 43: 111–117.

    Article  CAS  Google Scholar 

  24. Thurman SA, Ramakrishna NR, DeWeese TL . Radiation therapy for the treatment of locally advanced and metastatic prostate cancer. Hematol Oncol Clin N Am 2001; 15: 423–443.

    Article  CAS  Google Scholar 

  25. Letsch M, Schally AV, Szepeshazi K, Halmos G, Nagy A . Effective treatment of experimental androgen sensitive and androgen independent intra-osseous prostate cancer with targeted cytotoxic somatostatin analogue AN-238. J Urol 2004; 171: 911–915.

    Article  CAS  Google Scholar 

  26. Gosselin MA, Guo W, Lee RJ . Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjugate Chem 2001; 12: 989–994.

    Article  CAS  Google Scholar 

  27. Balasubramaniam RP, Bennett MJ, Aberle AM, Malone JG, Nantz MH, Malone RW . Structural and functional analysis of cationic transfection lipids: the hydrophobic domain. Gene Therapy 1996; 3: 163–172.

    CAS  Google Scholar 

  28. Zou Y, Zong G, Ling YH, Perez-Soler R . Development of cationic liposome formulations for intratracheal gene therapy of early lung cancer. Cancer Gene Ther 2000; 7: 683–696.

    Article  CAS  Google Scholar 

  29. Solodin I, Brown CS, Bruno MS, Chow CY, Jang EH, Debs R et al. A novel series of amphilic imidazolinium compounds for in vitro and in vivo delivery. Biochemistry 1995; 34: 13537–13544.

    Article  CAS  Google Scholar 

  30. Lee ER, Marshall J, Siegel CS, Jiang C, Yew NS, Nichols MR et al. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 1996; 7: 1701–1717.

    Article  CAS  Google Scholar 

  31. Gorman CM, Aikawa M, Fox B, Fox E, Lapuz C, Michaud B et al. Efficient in vivo delivery of DNA to pulmonary cells using the novel lipid EDMPC. Gene Therapy 1997; 4: 983–992.

    Article  CAS  Google Scholar 

  32. Coll J, Negoescu A, Louis N, Sachs L, Tenaud C, Girardot V et al. Antitumor activity of bax and p53 naked gene transfer in lung cancer: in vitro and in vivo analysis. Hum Gene Ther 1998; 9: 2063–2074.

    Article  CAS  Google Scholar 

  33. Coll JL, Chollet P, Brambilla E, Desplanques D, Behr JP, Favrot M et al. In vivo delivery to tumors of DNA complexed with linear polythylenimine. Hum Gene Ther 1999; 10: 1659–1666.

    Article  CAS  Google Scholar 

  34. Smrekar B, Wightman L, Wolschek MF, Lichtenberger C, Ruzicka R, Ogris M et al. Tissue-dependent factors affect gene delivery to tumors in vivo. Gene Therapy 2003; 10: 1079–1088.

    Article  CAS  Google Scholar 

  35. Verbaan FJ, Oussoren C, van Dam IM, Takakura Y, Hashida M, Crommelin DJ et al. The fate of poly(2-dimethyl amino ethyl)methacrylate-based polyplexes after intravenous administration. Int J Pharm 2001; 214: 99–101.

    Article  CAS  Google Scholar 

  36. Brown LF, Guidi AJ, Tognazzi K, Dvorak HF . Vascular permeability factor/vascular endothelial growth factor and vascular stroma formation in neoplasia. Insights from in situ hybridization studies. J Histochem Cytochem 1998; 46: 569–575.

    Article  CAS  Google Scholar 

  37. Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig NE . Halting angiogenesis suppresses carcinoma cell invasion. Nat Med 1997; 3: 1222–1227.

    Article  CAS  Google Scholar 

  38. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY et al. Vascular integrin αvβ3: a new prognostic indicator in breast cancer. Clin Cancer Res 1998; 4: 2625–2634.

    CAS  Google Scholar 

  39. Wright Jr GL, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 1996; 48: 326–334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Moffatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moffatt, S., Papasakelariou, C., Wiehle, S. et al. Successful in vivo tumor targeting of prostate-specific membrane antigen with a highly efficient J591/PEI/DNA molecular conjugate. Gene Ther 13, 761–772 (2006). https://doi.org/10.1038/sj.gt.3302721

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302721

Keywords

This article is cited by

Search

Quick links