Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene transfer into human hematopoietic progenitor cells with an episomal vector carrying an S/MAR element

Abstract

Episomally maintained self-replicating systems present attractive alternative vehicles for gene therapy applications. Recent insights into the ability of chromosomal scaffold/matrix attachment regions (S/MARs) to mediate episomal maintenance of genetic elements allowed the development of a small circular episomal vector that functions independently of virally encoded proteins. In this study, we investigated the potential of this vector, pEPI-eGFP, to mediate gene transfer in hematopoietic progenitor cell lines and primary human cells. pEPI-eGFP was episomally maintained and conferred sustained eGFP expression even in nonselective conditions in the human cell line, K562, as well as in primary human fibroblast-like cells. In contrast, in the murine erythroleukemia cell line, MEL, transgene expression was silenced through histone deacetylation, despite the vector's episomal persistence. Hematopoietic semisolid cell colonies derived from transfected human cord blood CD34+ cells expressed eGFP, albeit at low levels. After 4 weeks, the vector is retained in approximately 1% of progeny cells. Our results provide the first evidence that S/MAR-based plasmids can function as stable episomes in primary human cells, supporting long-term transgene expression. However, they do not display universal behavior in all cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Klein C, Baum C . Gene therapy for inherited disorders of haematopoietic cells. Hematol J 2004; 5: 103–111.

    Article  CAS  PubMed  Google Scholar 

  2. Bordignon C, Roncarolo MG . Therapeutic applications for hematopoietic stem cell gene transfer. Nat Immunol 2002; 3: 318–321.

    Article  CAS  PubMed  Google Scholar 

  3. Karlsson S, Ooka A, Woods NB . Development of gene therapy for blood disorders by gene transfer into haematopoietic stem cells. Haemophilia 2002; 8: 255–260.

    Article  CAS  PubMed  Google Scholar 

  4. Larochelle A, Dunbar CE . Genetic manipulation of hematopoietic stem cells. Semin Hematol 2004; 41: 257–271.

    Article  CAS  PubMed  Google Scholar 

  5. Pannell DJ, Ellis J . Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol 2001; 11: 205–217.

    Article  CAS  PubMed  Google Scholar 

  6. Hacein-Bey-Abina S, von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  7. Baum C, von Kalle C, Staal FJ, Li Z, Fehse B, Schmidt M et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9: 5–13.

    Article  CAS  PubMed  Google Scholar 

  8. Lipps HJ, Bode J . Exploiting chromosomal and viral strategies: the design of safe and efficient non-viral gene transfer systems. Curr Opin Mol Ther 2001; 3: 133–141.

    CAS  PubMed  Google Scholar 

  9. Lipps HJ, Jenke AC, Nehlsen K, Scinteie MF, Stehle IM, Bode J . Chromosome-based vectors for gene therapy. Gene 2003; 304: 23–33.

    Article  CAS  PubMed  Google Scholar 

  10. Van Craenenbroeck K, Vanhoenacker P, Haegeman G . Episomal vectors for gene expression in mammalian cells. Eur J Biochem 2000; 267: 5665–5678.

    Article  CAS  PubMed  Google Scholar 

  11. Slinskey A, Barnes D, Pipas JM . Simian virus 40 large T antigen J domain and Rb-binding motif are sufficient to block apoptosis induced by growth factor withdrawal in a neural stem cell line. J Virol 1999; 73: 6791–6799.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Moens U, Seternes OM, Johansen B, Rekvig OP . Mechanisms of transcriptional regulation of cellular genes by SV40 large T- and small t-antigens. Virus Genes 1997; 15: 135–154.

    Article  CAS  PubMed  Google Scholar 

  13. Murray RJ, Kurilla MG, Brooks JM, Thomas WA, Rowe M, Kieff E et al. Identification of target antigens for the human cytotoxic T cell response to Epstein–Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 1992; 176: 157–168.

    Article  CAS  PubMed  Google Scholar 

  14. Wilson JB, Bell JL, Levine AJ . Expression of Epstein–Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 1996; 15: 3117–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsimbouri P, Drotar ME, Coy JL, Wilson JB . Bcl-x L and RAG genes are induced and the response to IL-2 enhanced in EμEBNA-1 transgenic mouse lymphocytes. Oncogene 2002; 21: 5182–5187.

    Article  CAS  PubMed  Google Scholar 

  16. Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ . A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucl Acid Res 1999; 27: 426–428.

    Article  CAS  Google Scholar 

  17. Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C et al. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 1992; 255: 195–197.

    Article  CAS  PubMed  Google Scholar 

  18. Baiker A, Maercker C, Piechaczek C, Schmidt SB, Bode J, Benham C et al. Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol 2000; 2: 182–184.

    Article  CAS  PubMed  Google Scholar 

  19. Jenke BH, Fetzer CP, Stehle IM, Jonsson F, Fackelmayer FO, Conradt H et al. An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo. EMBO Rep 2002; 3: 349–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jenke AC, Stehle IM, Herrmann F, Eisenberger T, Baiker A, Bode J et al. Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci USA 2004; 101: 11322–11327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gahmberg CG, Andersson LC . K562 – a human leukemia cell line with erythroid features. Semin Hematol 1981; 18: 72–77.

    CAS  PubMed  Google Scholar 

  22. Antoniou M . Induction of erythroid-specific expression in murine erythroleukemia (MEL) cell lines. In: Murray EJ (ed). Methods in Molecular Biology: Gene Transfer and Expression Protocols. Humana Press: New York, 1991, pp 421–434.

    Chapter  Google Scholar 

  23. Hirt B . Selective extraction of polyoma DNA from infected mouse cell culture. J Mol Biol 1967; 26: 365–369.

    Article  CAS  PubMed  Google Scholar 

  24. Chow CM, Athanassiadou A, Raguz S, Psiouri L, Harland L, Malik M et al. LCR-mediated, long-term tissue-specific gene expression within replicating episomal plasmid and cosmid vectors. Gene Therapy 2002; 9: 327–336.

    Article  CAS  PubMed  Google Scholar 

  25. Riggs MG, Whittaker RG, Neumann JR, Ingram VM . n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 1977; 268: 462–464.

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida M, Kijima M, Akita M, Beppu T . Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990; 265: 17174–17179.

    CAS  PubMed  Google Scholar 

  27. Stehle IM, Scinteie MF, Baiker A, Jenke AC, Lipps HJ . Exploiting a minimal system to study the epigenetic control of DNA replication: the interplay between transcription and replication. Chromosome Res 2003; 11: 413–421.

    Article  CAS  PubMed  Google Scholar 

  28. Toneguzzo F, Keating A . Stable expression of selectable genes introduced into human hematopoietic stem cells by electric field-mediated DNA transfer. Proc Natl Acad Sci USA 1986; 83: 3496–3499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keating A, Toneguzzo F . Gene transfer by electroporation: a model for gene therapy. Prog Clin Biol Res 1990; 333: 491–498.

    CAS  PubMed  Google Scholar 

  30. Van Tendeloo VF, Willems R, Ponsaerts P, Lenjou M, Nijs G, Vanhove M et al. High-level transgene expression in primary human T lymphocytes and adult bone marrow CD34+ cells via electroporation-mediated gene delivery. Gene Therapy 2000; 7: 1431–1437.

    Article  CAS  PubMed  Google Scholar 

  31. Wu MH, Liebowitz DN, Smith SL, Williams SF, Dolan ME . Efficient expression of foreign genes in human CD34+ hematopoietic precursor cells using electroporation. Gene Therapy 2001; 8: 384–390.

    Article  CAS  PubMed  Google Scholar 

  32. Wu MH, Smith SL, Dolan ME . High efficiency electroporation of human umbilical cord blood CD34+ hematopoietic precursor cells. Stem Cells 2001; 19: 492–499.

    Article  CAS  PubMed  Google Scholar 

  33. Satoh Å, Hirai H, Inaba T, Shimazaki C, Nakagawa M, Imanishi J et al. Successful transfer of ADA gene in vitro into human peripheral blood CD34+ cells by transfecting EBV-based episomal vectors. FEBS Lett 1998; 441: 39–42.

    Article  CAS  PubMed  Google Scholar 

  34. Verma S, Woffendin C, Bahner I, Ranga U, Xu L, Yang ZY et al. Gene transfer into human umbilical cord blood-derived CD34+ cells by particle-mediated gene transfer. Gene Therapy 1998; 5: 692–699.

    Article  CAS  PubMed  Google Scholar 

  35. Bode J, Fetzer CP, Nehlsen K, Scinteie M, Hinrich B-H, Baiker A et al. The hitchhiking principle: optimizing episomal vectors for the use in gene therapy and biotechnology. Gene Ther Mol Biol 2001; 6: 33–46.

    Google Scholar 

  36. Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R . An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J 2004; 23: 191–201.

    Article  CAS  PubMed  Google Scholar 

  37. Jenke AC, Scinteie MF, Stehle IM, Lipps HJ . Expression of a transgene encoded on a non-viral episomal vector is not subject to epigenetic silencing by cytokine methylation. Mol Biol Rep 2004; 31: 85–90.

    Article  CAS  PubMed  Google Scholar 

  38. Miller D, Adam M, Miller A . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4239–4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tisdale JF, Hanazono Y, Sellers SE, Agricola BA, Metzger ME, Donahue RE et al. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood 1998; 92: 1131–1141.

    CAS  PubMed  Google Scholar 

  40. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  41. Williams DA . Ex vivo expansion of hematopoietic stem and progenitor cells: robbing Peter to pay Paul? Blood 1993; 81: 3169–3172.

    CAS  PubMed  Google Scholar 

  42. Luo D, Saltzman WM . Synthetic DNA delivery systems. Nat Biotechnol 2000; 18: 33–37.

    Article  CAS  PubMed  Google Scholar 

  43. Guo ZS, Wang LH, Eisensmith RC, Woo SL . Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Therapy 1996; 3: 802–810.

    CAS  PubMed  Google Scholar 

  44. Conese M, Auriche C, Ascenzioni F . Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Therapy 2004; 11: 1735–1741.

    Article  CAS  PubMed  Google Scholar 

  45. Sclimenti CR, Calos MP . Epstein–Barr virus vectors for gene expression and transfer. Curr Opin Biotechnol 1998; 9: 476–479.

    Article  CAS  PubMed  Google Scholar 

  46. Black J, Vos J-M . Establishment of an oriP/EBNA1-based episomal vector transcribing human genomic β-globin in cultured murine fibroblasts. Gene Therapy 2002; 9: 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  47. Mucke S, Polack A, Pawlita M, Zehnpfennig D, Massoudi N, Bohlen H et al. Suitability of Epstein–Barr virus-based episomal vectors for expression of cytokine genes in human lymphoma cells. Gene Therapy 1997; 4: 82–92.

    Article  CAS  PubMed  Google Scholar 

  48. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1994.

    Google Scholar 

Download references

Acknowledgements

We thank Ioannis Vervitas (Department of Obstetrics, Patras University Hospital) for cord blood collection, Professor Hans Lipps (Institute of Cell Biology, University of Witten, Germany) and Aris Giannakopoulos (Department of Biology, Faculty of Medicine, University of Patras) for providing pEPI-eGFP and pCEP4-eGFP plasmids, respectively, and Zoi Lygerou (Department of Biology, Faculty of Medicine, University of Patras) for her generous gifts of antibodies and fruitful discussions. This work was supported by grants ‘Karatheodori 2003’ (B112, University of Patras) and EPAN 2003 (SP-YB90, EU via GSRT) to AA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E P Papapetrou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papapetrou, E., Ziros, P., Micheva, I. et al. Gene transfer into human hematopoietic progenitor cells with an episomal vector carrying an S/MAR element. Gene Ther 13, 40–51 (2006). https://doi.org/10.1038/sj.gt.3302593

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302593

Keywords

This article is cited by

Search

Quick links