Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Effect of hypoxia on Ad5 infection, transgene expression and replication

Abstract

Oxygen deprivation (hypoxia) is a common feature of various human maladies, including cardiovascular diseases and cancer; however, the effect of hypoxia on Ad-based gene therapies has not been described. In this study, we evaluated how hypoxia (1% pO2) affects different aspects of Ad-based therapies, including attachment and uptake, transgene expression, and replication, in a series of cancer cell lines and primary normal cells. We found that hypoxia had no significant effect on the expression or function of the Ad5 attachment (Coxsackievirus and Adenovirus Receptor) and internalization (αv integrins) proteins, nor on the human cytomegalovirus-driven expression of an exogenous gene carried by a replication-incompetent Ad. Viral replication, however, was compromised by hypoxic conditions. Our studies revealed hypoxia-induced reductions in E1A levels that were mediated at the post-transcriptional level. E1A drives cells into the viral replication optimal S phase of the cell cycle; consequently, the combination of reduced E1A protein and hypoxia-induced G1 arrest of cells may be responsible for the lack of efficient viral replication under hypoxic conditions. Consequently, while traditional replication-incompetent Ad-based vectors appear to be viable delivery systems for hypoxia-associated disease indications, our studies suggest that Oncolytic Ads may need additional factors to efficiently treat hypoxic regions of human tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Williams DA, Smith FO . Progress in the use of gene transfer methods to treat genetic blood diseases. Hum Gene Ther 2000; 11: 2059–2066.

    Article  CAS  PubMed  Google Scholar 

  2. INGN 201. Ad-p53, Ad5CMV-p53, Adenoviral p53, INGN 101, p53 gene therapy – Introgen, RPR/INGN 201. BioDrugs 2003; 17: 216–222.

  3. Swisher SG et al. Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin Cancer Res 2003; 9: 93–101.

    CAS  PubMed  Google Scholar 

  4. Buller RE et al. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther 2002; 9: 553–566.

    Article  CAS  PubMed  Google Scholar 

  5. Kirn D . Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene 2000; 19: 6660–6669.

    Article  CAS  PubMed  Google Scholar 

  6. Hermiston T . Fighting fire with fire: attacking the complexity of human tumors with armed therapeutic viruses. Curr Opin Mol Ther 2002; 4: 334–342.

    CAS  PubMed  Google Scholar 

  7. Semenza GL et al. Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv Exp Med Biol 2000; 475: 123–130.

    Article  CAS  PubMed  Google Scholar 

  8. Niinikoski J . Hyperbaric oxygen therapy of diabetic foot ulcers, transcutaneous oxymetry in clinical decision making. Wound Repair Regen 2003; 11: 458–461.

    Article  PubMed  Google Scholar 

  9. Zauner A, Daugherty WP, Bullock MR, Warner DS . Brain oxygenation and energy metabolism: part I – biological function and pathophysiology. Neurosurgery 2002; 51: 289–301; discussion 302.

    PubMed  Google Scholar 

  10. Wouters BG et al. Hypoxia as a target for combined modality treatments. Eur J Cancer 2002; 38: 240–257.

    Article  CAS  PubMed  Google Scholar 

  11. Brown JM . The hypoxic cell: a target for selective cancer therapy – eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1999; 59: 5863–5870.

    CAS  PubMed  Google Scholar 

  12. Graeber TG et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379: 88–91.

    Article  CAS  PubMed  Google Scholar 

  13. Wouters BG et al. Modulation of cell death in the tumor microenvironment. Semin Radiat Oncol 2003; 13: 31–41.

    Article  PubMed  Google Scholar 

  14. Brown JM, Giaccia AJ . The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58: 1408–1416.

    CAS  PubMed  Google Scholar 

  15. Ratcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW . Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 1998; 201 (Part 8): 1153–1162.

    CAS  PubMed  Google Scholar 

  16. Giaccia A, Siim BG, Johnson RS . HIF-1 as a target for drug development. Nat Rev Drug Discov 2003; 2: 803–811.

    Article  CAS  PubMed  Google Scholar 

  17. Post DE, Van Meir EG . A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene 2003; 22: 2065–2072.

    Article  CAS  PubMed  Google Scholar 

  18. Aebersold DM et al. Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 2001; 61: 2911–2916.

    CAS  PubMed  Google Scholar 

  19. Vukovic V et al. Hypoxia-inducible factor-1alpha is an intrinsic marker for hypoxia in cervical cancer xenografts. Cancer Res 2001; 61: 7394–7398.

    CAS  PubMed  Google Scholar 

  20. Wenger RH et al. Hypoxia-inducible factor-1 alpha is regulated at the post-mRNA level. Kidney Int 1997; 51: 560–563.

    Article  CAS  PubMed  Google Scholar 

  21. Shenk T . Adenoviridae: the virus and their replication. In: Knipe D, Howley, PM (eds). Fields Virology. Lippincott Williams & Wilkins: Philadelphia, 2001, pp 2266.

    Google Scholar 

  22. Howitt J, Anderson CW, Freimuth P . Adenovirus interaction with its cellular receptor CAR. Curr Top Microbiol Immunol 2003; 272: 331–364.

    CAS  PubMed  Google Scholar 

  23. Bergelson JM et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  24. Triantafilou K, Takada Y, Triantafilou M . Mechanisms of integrin-mediated virus attachment and internalization process. Crit Rev Immunol 2001; 21: 311–322.

    Article  CAS  PubMed  Google Scholar 

  25. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  26. Noutsias M et al. Human coxsackie-adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: implications for cardiotropic viral infections. Circulation 2001; 104: 275–280.

    Article  CAS  PubMed  Google Scholar 

  27. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  28. Salone B et al. Integrin alpha3beta1 is an alternative cellular receptor for adenovirus serotype 5. J Virol 2003; 77: 13448–13454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dechecchi MC et al. Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75: 8772–8780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hong SS et al. Enhancement of adenovirus-mediated gene delivery by use of an oligopeptide with dual binding specificity. Hum Gene Ther 1999; 10: 2577–2586.

    Article  CAS  PubMed  Google Scholar 

  31. Li E et al. Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 2001; 75: 5405–5409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Davison E et al. Adenovirus type 5 uptake by lung adenocarcinoma cells in culture correlates with Ad5 fibre binding is mediated by alpha(v)beta1 integrin and can be modulated by changes in beta1 integrin function. J Gene Med 2001; 3: 550–559.

    Article  CAS  PubMed  Google Scholar 

  33. Miyazawa N et al. Fiber swap between adenovirus subgroups B and C alters intracellular trafficking of adenovirus gene transfer vectors. J Virol 1999; 73: 6056–6065.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldsmith KT, Curiel DT, Engler JA, Garver Jr RI . Trans complementation of an E1A-deleted adenovirus with codelivered E1A sequences to make recombinant adenoviral producer cells. Hum Gene Ther 1994; 5: 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  35. White JR et al. Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 2004; 83: 1–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ning W et al. Genome wide analysis of the endothelial transcriptome under short-term chronic hypoxia. Physiol Genomics 2004; 18: 70–78.

    Article  CAS  PubMed  Google Scholar 

  37. Amano H, Maruyama K, Naka M, Tanaka T . Target validation in hypoxia-induced vascular remodeling using transcriptome/metabolome analysis. Pharmacogenomics J 2003; 3: 183–188.

    Article  CAS  PubMed  Google Scholar 

  38. Hawkins LK, Lemoine NR, Kirn D . Oncolytic biotherapy: a novel therapeutic plafform. Lancet Oncol 2002; 3: 17–26.

    Article  CAS  PubMed  Google Scholar 

  39. Kanerva A, Hemminki A . Modified adenoviruses for cancer gene therapy. Int J Cancer 2004; 110: 475–480.

    Article  CAS  PubMed  Google Scholar 

  40. Kirn D, Niculescu-Duvaz I, Hallden G, Springer CJ . The emerging fields of suicide gene therapy and virotherapy. Trends Mol Med 2002; 8: S68–S73.

    Article  CAS  PubMed  Google Scholar 

  41. Post DE, Khuri FR, Simons JW, Van Meir EG . Replicative oncolytic adenoviruses in multimodal cancer regimens. Hum Gene Ther 2003; 14: 933–946.

    Article  CAS  PubMed  Google Scholar 

  42. Nettelbeck DM . Virotherapeutics: conditionally replicative adenoviruses for viral oncolysis. Anticancer Drugs 2003; 14: 577–584.

    Article  CAS  PubMed  Google Scholar 

  43. Hitt MM, Graham FL . Adenovirus E1A under the control of heterologous promoters: wide variation in E1A expression levels has little effect on virus replication. Virology 1990; 179: 667–678.

    Article  CAS  PubMed  Google Scholar 

  44. Schmaltz C, Hardenbergh PH, Wells A, Fisher DE . Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 1998; 18: 2845–2854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Freyer JP, Sutherland RM . Proliferative and clonogenic heterogeneity of cells from EMT6/Ro multicellular spheroids induced by the glucose and oxygen supply. Cancer Res 1986; 46: 3513–3520.

    CAS  PubMed  Google Scholar 

  46. Bellett AJ et al. Control functions of adenovirus transformation region E1A gene products in rat and human cells. Mol Cell Biol 1985; 5: 1933–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bellett AJ et al. Functions of the two adenovirus early E1A proteins and their conserved domains in cell cycle alteration, actin reorganization, and gene activation in rat cells. J Virol 1989; 63: 303–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Binley K et al. Hypoxia-mediated tumour targeting. Gene Therapy 2003; 10: 540–549.

    Article  CAS  PubMed  Google Scholar 

  49. Binley K et al. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Therapy 1999; 6: 1721–1727.

    Article  CAS  PubMed  Google Scholar 

  50. Kaliberov SA et al. Adenovirus-mediated transfer of BAX driven by the vascular endothelial growth factor promoter induces apoptosis in lung cancer cells. Mol Ther 2002; 6: 190–198.

    Article  CAS  PubMed  Google Scholar 

  51. Goda N, Dozier SJ, Johnson RS . HIF-1 in cell cycle regulation, apoptosis, and tumor progression. Antioxid Redox Signal 2003; 5: 467–473.

    Article  CAS  PubMed  Google Scholar 

  52. Ben-Israel H, Kleinberger T . Adenovirus and cell cycle control. Front Biosci 2002; 7: d1369–d1395.

    Article  CAS  PubMed  Google Scholar 

  53. Fukuda K et al. E1A, E1B double-restricted adenovirus for oncolytic gene therapy of gallbladder cancer. Cancer Res 2003; 63: 4434–4440.

    CAS  PubMed  Google Scholar 

  54. Holm PS et al. Multidrug-resistant cancer cells facilitate E1-independent adenoviral replication: impact for cancer gene therapy. Cancer Res 2004; 64: 322–328.

    Article  CAS  PubMed  Google Scholar 

  55. Kim E et al. Ad-mTERT-delta19, a conditional replication-competent adenovirus driven by the human telomerase promoter, selectively replicates in and elicits cytopathic effect in a cancer cell-specific manner. Hum Gene Ther 2003; 14: 1415–1428.

    Article  CAS  PubMed  Google Scholar 

  56. Wold W . Adenovirus Methods and Protocols. Humana Press Inc.: Totowa, NJ, 1998.

    Book  Google Scholar 

  57. Grines CL et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002; 105: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cecile Chartier and Fang Jin for providing us Ad5 and Ad5-Luc; Juan Irwin for anti-CAR monoclonal antibody; Alan Brooks, Peiyin Wang, Chris Haskell, Maxine Bauzon, Paul Harden and Irene Kuhn for excellent technical support and helpful discussions; Rhonda Humm, Jean MacRobbie and Eileen Paulo-Chrisco for providing cell lines; Richard N Harkins and Gabor Rubanyi for critical reading of the manuscript. This work is supported by a PFO fellowship from Schering AG.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, B., Hermiston, T. Effect of hypoxia on Ad5 infection, transgene expression and replication. Gene Ther 12, 902–910 (2005). https://doi.org/10.1038/sj.gt.3302448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302448

Keywords

This article is cited by

Search

Quick links