Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Retroviral hybrid LTR vector strategy: functional analysis of LTR elements and generation of endothelial cell specificity

Abstract

Transcriptional targeting is an important aspect of developing gene therapy vectors in order to restrict transgene expression to selected target cells. One approach, when using retroviral vectors, is to replace viral transcriptional control elements within the long terminal repeat (LTR) with sequences imparting the desired specificity. We have developed such hybrid LTR retroviruses, incorporating sequences from each of the human promoters for flt-1, ICAM-2 and KDR, as part of our antivascular cancer gene therapy strategy targeting tumour endothelial cells. The chosen fragments were used to replace the enhancer or combined enhancer and proximal promoter regions of the viral LTR. All showed activity in primary human breast microvascular endothelial cells, with viruses incorporating ICAM-2 sequences exhibiting the greatest specificity versus nonendothelial cells in vitro and a marked alteration of specificity towards endothelial cells in a subcutaneous xenograft model in vivo. Moreover, our study documents the effect of enhancer and/or proximal promoter deletion on LTR activity and reports that differential dependence in different cell lines can give the false impression of specificity if experiments are not adequately controlled. This finding also has implications for other retroviral vector designs seeking to provide transcriptional specificity and for their safety with respect to prevention of gene activation at sites of proviral integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Holmgren L, O'Reilly MS, Folkman J . Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149–153.

    Article  CAS  PubMed  Google Scholar 

  2. Fong TA et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106.

    CAS  PubMed  Google Scholar 

  3. Miki T et al. Angiogenesis inhibitor TNP-470 inhibits growth and metastasis of a hormone-independent rat prostatic carcinoma cell line. J Urol 1998; 160: 210–213.

    Article  CAS  PubMed  Google Scholar 

  4. Mitjans F et al. An anti-alpha v-integrin antibody that blocks integrin function inhibits the development of a human melanoma in nude mice. J Cell Sci 1995; 108: 2825–2838.

    CAS  PubMed  Google Scholar 

  5. O'Reilly MS, Holmgren L, Chen C, Folkman J . Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689–692.

    Article  CAS  PubMed  Google Scholar 

  6. O'Reilly MS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  CAS  PubMed  Google Scholar 

  7. Griggs J, Metcalfe JC, Hesketh R . Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol 2001; 2: 82–87.

    Article  CAS  PubMed  Google Scholar 

  8. Denekamp J . Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br J Cancer 1982; 45: 136–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mavria G, Porter CD . Reduced growth in response to ganciclovir treatment of subcutaneous xenografts expressing HSV-tk in the vascular compartment. Gene Therapy 2001; 8: 913–920.

    Article  CAS  PubMed  Google Scholar 

  10. Granger SW, Fan H . In vivo footprinting of the enhancer sequences in the upstream long terminal repeat of Moloney murine leukemia virus: differential binding of nuclear factors in different cell types. J Virol 1998; 72: 8961–8970.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Speck NA, Baltimore D . Six distinct nuclear factors interact with the 75-base-pair repeat of the Moloney murine leukemia virus enhancer. Mol Cell Biol 1987; 7: 1101–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Emerman M, Temin HM . Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 1984; 39: 449–467.

    Article  CAS  PubMed  Google Scholar 

  13. Cone RD, Weber-Benarous A, Baorto D, Mulligan RC . Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector. Mol Cell Biol 1987; 7: 887–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakajima K et al. An improved retroviral vector for assaying promoter activity. Analysis of promoter interference in pIP211 vector. FEBS Lett 1993; 315: 129–133.

    Article  CAS  PubMed  Google Scholar 

  15. Halene S et al. Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector. Blood 1999; 94: 3349–3357.

    CAS  PubMed  Google Scholar 

  16. Robbins PB et al. Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells. J Virol 1997; 71: 9466–9474.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Prince VE, Rigby PW . Derivatives of Moloney murine sarcoma virus capable of being transcribed in embryonal carcinoma stem cells have gained a functional Sp1 binding site. J Virol 1991; 65: 1803–1811.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore KA et al. Evaluation of lymphoid-specific enhancer addition or substitution in a basic retrovirus vector. Hum Gene Ther 1991; 2: 307–315.

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari G et al. A retroviral vector containing a muscle-specific enhancer drives gene expression only in differentiated muscle fibers. Hum Gene Ther 1995; 6: 733–742.

    Article  CAS  PubMed  Google Scholar 

  20. Fassati A et al. Insertion of two independent enhancers in the long terminal repeat of a self-inactivating vector results in high-titer retroviral vectors with tissue-specific expression. Hum Gene Ther 1998; 9: 2459–2468.

    Article  CAS  PubMed  Google Scholar 

  21. Diaz RM, Eisen T, Hart IR, Vile RG . Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma. J Virol 1998; 72: 789–795.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vile RG et al. Tissue-specific gene expression from Mo-MLV retroviral vectors with hybrid LTRs containing the murine tyrosinase enhancer/promoter. Virology 1995; 214: 307–313.

    Article  CAS  PubMed  Google Scholar 

  23. Grande A et al. Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells. Blood 1999; 93: 3276–3285.

    CAS  PubMed  Google Scholar 

  24. Indraccolo S et al. Modulation of Moloney leukemia virus long terminal repeat transcriptional activity by the murine CD4 silencer in retroviral vectors. Virology 2000; 276: 83–92.

    Article  CAS  PubMed  Google Scholar 

  25. Jager U, Zhao Y, Porter CD . Endothelial cell-specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences. J Virol 1999; 73: 9702–9709.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mavria G, Jager U, Porter CD . Generation of a high titre retroviral vector for endothelial cell-specific gene expression in vivo. Gene Therapy 2000; 7: 368–376.

    Article  CAS  PubMed  Google Scholar 

  27. Hanahan D . Signaling vascular morphogenesis and maintenance. Science 1997; 277: 48–50.

    Article  CAS  PubMed  Google Scholar 

  28. Boocock CA et al. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst 1995; 87: 506–516.

    Article  CAS  PubMed  Google Scholar 

  29. Hatva E et al. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol 1995; 146: 368–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kranz A, Mattfeldt T, Waltenberger J . Molecular mediators of tumor angiogenesis: enhanced expression and activation of vascular endothelial growth factor receptor KDR in primary breast cancer. Int J Cancer 1999; 84: 293–298.

    Article  CAS  PubMed  Google Scholar 

  31. Anastassiou G et al. Platelet endothelial cell adhesion molecule-1 (PECAM-1): a potential prognostic marker involved in leukocyte infiltration of renal cell carcinoma. Oncology 1996; 53: 127–132.

    Article  CAS  PubMed  Google Scholar 

  32. Morishita K, Johnson DE, Williams LT . A novel promoter for vascular endothelial growth factor receptor (flt-1) that confers endothelial-specific gene expression. J Biol Chem 1995; 270: 27948–27953.

    Article  CAS  PubMed  Google Scholar 

  33. Patterson C et al. Cloning and functional analysis of the promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. J Biol Chem 1995; 270: 23111–23118.

    Article  CAS  PubMed  Google Scholar 

  34. Cowan PJ et al. Targeting gene expression to endothelial cells in transgenic mice using the human intracellular adhesion molecule 2 promoter. Transplantation 1996; 62: 155–160.

    Article  CAS  PubMed  Google Scholar 

  35. Martinez E, Chiang CM, Ge H, Roeder RG . TATA-binding protein-associated factor(s) in TFIID function through the initiator to direct basal transcription from a TATA-less class II promoter. EMBO J 1994; 13: 3115–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shibuya M et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 1990; 5: 519–524.

    CAS  PubMed  Google Scholar 

  37. Smale ST . Core promoters: active contributors to combinatorial gene regulation. Genes Dev 2001; 15: 2503–2508.

    Article  CAS  PubMed  Google Scholar 

  38. Cowan PJ et al. The human ICAM-2 promoter is endothelial cell-specific in vitro and in vivo and contains critical Sp1 and GATA binding sites. J Biol Chem 1998; 273: 11737–11744.

    Article  CAS  PubMed  Google Scholar 

  39. Schlaeger TM et al. Uniform vascular–endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci USA 1997; 94: 3058–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aitsebaomo J et al. Vezf1/DB1 is an endothelial cell-specific transcription factor that regulates expression of the endothelin-1 promoter. J Biol Chem 2001; 276: 39197–39205.

    Article  CAS  PubMed  Google Scholar 

  41. Yu S-F et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci USA 1986; 83: 3194–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kohn DB, Sadelain M, Glorioso JC . Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 2003; 3: 477–488.

    Article  CAS  PubMed  Google Scholar 

  43. Reuss FU, Berdel B, Ploss M, Heber R . Replication of enhancer-deficient amphotropic murine leukemia virus in human cells. Proc Natl Acad Sci USA 2001; 98: 10898–10903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lunardi-Iskandar Y et al. Tumorigenesis and metastasis of neoplastic Kaposi's sarcoma cell line in immunodeficient mice blocked by a human pregnancy hormone. Nature 1995; 375: 64–68.

    Article  CAS  PubMed  Google Scholar 

  45. Cosset F-L et al. High titre packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995; 69: 7430–7436.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ades EW et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 1992; 99: 683–690.

    Article  CAS  PubMed  Google Scholar 

  47. Wernert N et al. c-ets1 proto-oncogene is a transcription factor expressed in endothelial cells during tumor vascularization and other forms of angiogenesis in humans. Am J Pathol 1992; 140: 119–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Porter CD et al. Cationic liposomes enhance the rate of transduction by a recombinant retroviral vector in vitro and in vivo. J Virol 1998; 72: 4832–4840.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council. We are grateful to the Institute of Cancer Research Biological Services Unit for animal husbandry and to S Clinton for preparing the sections. In addition, we are grateful to F-L Cosset for providing the TEFLY A8 packaging cell line; RC Gallo for the KS Y-1 cell line; the Centers for Disease Control and Prevention, Atlanta for the HMEC-1 cell line; and C Clarke and M O'Hare for the primary breast microvascular endothelial cells.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, T., Kaspers, J. & Porter, C. Retroviral hybrid LTR vector strategy: functional analysis of LTR elements and generation of endothelial cell specificity. Gene Ther 11, 775–783 (2004). https://doi.org/10.1038/sj.gt.3302220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302220

Keywords

This article is cited by

Search

Quick links