Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Lymphotactin cotransfection enhances the therapeutic efficacy of dendritic cells genetically modified with melanoma antigen gp100

Abstract

Lymphotactin (Lptn) is a C chemokine that attracts T cells and NK cells. Dendritic cells (DC) are highly efficient, specialized antigen-presenting cells and antigen-pulsed DC has been regarded as promising vaccines in cancer immunotherapy. The aim of our present study is to improve the therapeutic efficacy of DC-based tumor vaccine by increasing the preferential chemotaxis of DC to T cells. In this study, Lptn and/or melanoma-associated antigen gp100 were transfected into mouse bone marrow-derived DC, which were used as vaccines in B16 melanoma model. Immunization of C57BL/6 mice with DC adenovirally cotransfected with Lptn and gp100 (Lptn/gp100-DC) could enhance the cytotoxicities of CTL and NK cells, increase the production of IL-2 and interferon-γ significantly, as compared with immunization with gp100-DC, Lptn-DC, LacZ-DC, DC or PBS counterparts. The Lptn/gp100-DC immunized mice exhibited resistance to tumor challenge most effectively. It was found that the tumor mass of mice vaccinated by Lptn/gp100-DC showed obvious necrosis and inflammatory cell infiltration. In vivo depletion analysis demonstrated that CD8+ T cells are the predominant T cell subset responsible for the antitumor effect of Lptn/gp100-DC and CD4+ T cells were necessary in the induction phase of tumor rejection, while NK cells were less important although they participated in the antitumor response either in the induction phase or in the effector phase. In the murine model with the pre-established subcutaneous B16 melanoma, immunization with Lptn/gp100-DC inhibited the tumor growth most significantly when compared with other counterparts. These findings provide a potential strategy to improve the efficacy of DC-based tumor vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Blankenstein T, Qin Z . Cancer vaccines in gene therapy Gene Therapy 1996 3: 95–96

    CAS  PubMed  Google Scholar 

  2. Pardoll DM . Cancer vaccines Nat Med 1998 4: 525–531

    Article  CAS  PubMed  Google Scholar 

  3. Fong L, Engleman EG . Dendritic cells in cancer immunotherapy Ann Rev Immunol 2000 18: 245–273

    Article  CAS  Google Scholar 

  4. Bubenik J . Genetically engineered dendritic cell-based cancer vaccines Int J Oncol 2001 18: 475–478

    CAS  PubMed  Google Scholar 

  5. Bender A et al. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood J Immunol Meth 1996 196: 121–135

    Article  CAS  Google Scholar 

  6. Yang S et al. Murine dendritic cells transfected with human GP100 elicit both antigen-specific CD8(+) and CD4(+) T-cell responses and are more effective than DNA vaccines at generating anti-tumor immunity Int J Cancer 1999 83: 532–540

    Article  CAS  PubMed  Google Scholar 

  7. Wan Y et al. Enhanced immune response to the melanoma antigen gp100 using recombinant adenovirus-transfected dendritic cells Cell Immunol 1999 198: 131–138

    Article  CAS  PubMed  Google Scholar 

  8. Kirk CJ, Mule JJ . Gene-modified dendritic cells for use in tumor vaccines Hum Gene Ther 2000 11: 797–806

    Article  CAS  PubMed  Google Scholar 

  9. Van Tendeloo VF, Van Broeckhoven C, Berneman ZN . Gene-based cancer vaccines: an ex vivo approach Leukemia 2001 15: 545–558

    Article  CAS  PubMed  Google Scholar 

  10. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  11. Panelli MC et al. Phase 1 study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100 J Immunother 2000 23: 487–498

    Article  CAS  PubMed  Google Scholar 

  12. Rosenberg SA et al. Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens J Natl Cancer Inst 1998 90: 1894–1900

    Article  CAS  PubMed  Google Scholar 

  13. Kudo S, Matsuno K, Ezaki T, Ogawa M . A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation J Exp Med 1997 185: 777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Austyn JM, Kupiec-Weglinski JW, Hankins DF, Morris PJ . Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone J Exp Med 1988 167: 646–651

    Article  CAS  PubMed  Google Scholar 

  15. Adema GJ . A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells Nature 1997 387: 713–717

    Article  CAS  PubMed  Google Scholar 

  16. Greaves DR . CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3alpha and is highly expressed in human dendritic cells J Exp Med 1997 186: 837–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kelner GS et al. Lymphotactin: a cytokine that respresents a new class of chemokine Science 1994 226: 1396–1399

    Google Scholar 

  18. Hedrick JA . Lymphotactin is produced by NK cells and attracts both NK cells and T cells in vivo J Immunol 1997 158: 1522–1540

    Google Scholar 

  19. Hedrick JA, Zlotnik A . Lymphotactin Clin Immunol Immunopathol 1998 87: 218–222

    Article  CAS  PubMed  Google Scholar 

  20. Giancarlo B et al. Migratory response of human natural killer cells to lymphotactin Eur J Immunol 1996 26: 3238–3241

    Article  CAS  PubMed  Google Scholar 

  21. Dilloo D et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity Nat Med 1996 2: 1090–1095

    Article  CAS  PubMed  Google Scholar 

  22. Cao X et al. Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity J Immunol 1998 161: 6238–6244

    CAS  PubMed  Google Scholar 

  23. Zoll B et al. Generation of cytokine-induced killer cells using exogenous interleukin-2, -7 or -12 Cancer Immunol Immunother 1998 47: 221–226

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberg SA et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma Nat Med 1998 4: 321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mukherji B et al. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells Proc Natl Acad Sci USA 1995 92: 8078–8082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reeves ME et al. Retroviral transfection of human dendritic cells with a tumor-associated antigen gene Cancer Res 1996 56: 5672–5677

    CAS  PubMed  Google Scholar 

  27. Kaplan JM et al. Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens J Immunol 1999 163: 699–707

    CAS  PubMed  Google Scholar 

  28. Brossart P et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  29. Zhai Y et al. Antigen-specific tumor vaccines. Development and characterization of recombinant adenoviruses encoding MART1 or gp100 for cancer therapy J Immunol 1996 156: 700–710

    CAS  PubMed  Google Scholar 

  30. Arthur JF et al. A comparison of gene transfer methods in human dendritic cells Cancer Gene Ther 1997 4: 17–25

    CAS  PubMed  Google Scholar 

  31. Rollins BJ . Chemokines Blood 1997 90: 909–928

    CAS  PubMed  Google Scholar 

  32. Baggiolini M, Dewald B, Moser B . Human chemokines: an update Ann Rev Immunol 1997 15: 675–705

    Article  CAS  Google Scholar 

  33. Cairns CM et al. Lymphotactin expression by engineered myeloma cells drives tumor regression: mediated by CD4(+) and CD8(+) T cells and neutrophils expressing XCR1 receptor J Immunol 2001 167: 57–65

    Article  CAS  PubMed  Google Scholar 

  34. Mule JJ et al. RANTES secretion by gene-modified tumor cells results in loss of tumorigenicity in vivo: role of immune cell subpopulations Hum Gene Ther 1996 7: 1545–1553

    Article  CAS  PubMed  Google Scholar 

  35. Tannenbaum CS et al. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor J Immunol 1998 161: 927–932

    CAS  PubMed  Google Scholar 

  36. Fushimi T, Kojima A, Moore MA, Crystal RG . Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth J Clin Invest 2000 105: 1383–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirk CJ et al. T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy Cancer Res 2001 61: 2062–2070

    CAS  PubMed  Google Scholar 

  38. Zhou LJ, Tedder TF . A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells Blood 1995 86: 3295–3301

    CAS  PubMed  Google Scholar 

  39. Power CA et al. Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3 alpha from lung dendritic cells J Exp Med 1997 186: 825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang W et al. Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin Hum Gene Ther 1999 10: 1151–1161

    Article  CAS  PubMed  Google Scholar 

  41. Gilboa E . The makings of a tumor rejection antigen Immunity 1999 11: 263–270

    Article  CAS  PubMed  Google Scholar 

  42. Zhai Y et al. Cloning and characterization of the genes encoding the murine homologues of the human melanoma antigens MART1 and gp100 J Immunother 1997 20: 15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Overwijk WW et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of ‘self’-reactive, tumoricidal T cells using high-affinity, altered peptide ligand J Exp Med 1998 188: 277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A . Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes J Exp Med 1998 187: 875–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mosmann TR, Sad S . The expanding universe of T-cell subsets: Th1, Th2 and more Immunol Today 1996 17: 138–146

    Article  CAS  PubMed  Google Scholar 

  46. Nishimura T et al. Distinct role of antigen-specific T helper type (Th1) and Th2 cells in tumor eradication in vivo J Exp Med 1999 190: 617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor C Shao for helpful discussion, Mr M Zhu and Mr H Yao for technical assistance. This work was supported by grants from the National Natural Science Foundation of China and National Key Basic Research Program of China (No. 2001 CB 510002).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, D., Zhang, W., Zheng, S. et al. Lymphotactin cotransfection enhances the therapeutic efficacy of dendritic cells genetically modified with melanoma antigen gp100. Gene Ther 9, 592–601 (2002). https://doi.org/10.1038/sj.gt.3301694

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301694

Keywords

Search

Quick links