Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice

Abstract

Heme oxygenase-1 (HO-1) is an inducible heat shock protein that regulates heme metabolism to form bilirubin, ferritin and carbon monoxide. Based on recent evidence that HO-1 is involved in the resolution of inflammation by modulating apoptotic cell death or cytokine expression, the present study examined whether overexpression of exogenous HO-1 gene transfer provides a therapeutic effect on a murine model of acute lung injury caused by the type A influenza virus. We demonstrate herein that the transfer of HO-1 cDNA resulted in (1) suppression of both pathological changes and intrapulmonary hemorrhage; (2) enhanced survival of animals; and (3) a decrease of inflammatory cells in the lung. TUNEL analysis revealed that HO-1 gene transfer reduced the number of respiratory epithelial cells with DNA damage, and caspase assay suggested that HO-1 suppressed lung injury via a caspase-8-mediated pathway. These findings suggest the feasibility of HO-1 gene transfer to treat lung injury induced by a pathogen commonly seen in the clinical setting. Since oxidative stress and lung injury are involved in many lung disorders, such as pneumonia induced by a variety of microorganisms and pulmonary fibrosis, HO-1 may be useful for wider clinical applications in gene therapy targeting lung disorders including acute pneumonia and pulmonary fibrosis. Gene Therapy (2001) 8, 1499–1507.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Crystal RG et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis Nat Genet 1994 8: 42–51

    Article  CAS  PubMed  Google Scholar 

  2. Harvey BG et al. Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus J Clin Invest 1999 104: 1245–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alton EW et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with patients with cystic fibrosis: a double-blind placebo-controlled trial Lancet 1999 353: 947–954

    Article  CAS  PubMed  Google Scholar 

  4. Roth JA et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer Nat Med 1996 2: 985–991

    Article  CAS  PubMed  Google Scholar 

  5. Tan Y et al. IL-2 gene therapy of advanced lung cancer patients Anticancer Res 1996 6: 1993–1998

    Google Scholar 

  6. Nemunaitis J et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer J Clin Oncol 2000 18: 609–622

    Article  CAS  PubMed  Google Scholar 

  7. Roth JA et al. Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement Semin Oncol 1998 25: 33–37

    CAS  PubMed  Google Scholar 

  8. Swisher SG et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer J Natl Cancer Inst 1999 91: 763–771

    Article  CAS  PubMed  Google Scholar 

  9. Kauczor HU et al. CT-guided intratumoral gene therapy in non-small-cell lung cancer Eur Radiol 1999 9: 292–296

    Article  CAS  PubMed  Google Scholar 

  10. Molnar-Kimber KL et al. Impact of preexisting and induced humoral and cellular immune responses in an adenovirus-based gene therapy phase I clinical trial for localized mesothelioma Hum Gene Ther 1998 9: 2121–2133

    Article  CAS  PubMed  Google Scholar 

  11. Sterman DH et al. Adenovirus-mediated herpes simplex virus thymidine kinase/gancyclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma Hum Gene Ther 1998 9: 1083–1092

    Article  CAS  PubMed  Google Scholar 

  12. Brigham KL . Gene therapy for acute diseases of the lung. In: Brigham KL (ed.) Gene Therapy for Diseases of the Lung Marcel Dekker: New York 1997 309–322

    Google Scholar 

  13. Suzuki M, Matsuse T, Ishigatsubo Y . Gene therapy for lung diseases: development in the vector biology and novel concepts for gene therapy applications Curr Mol Med 2001 1: 67–79

    Article  CAS  PubMed  Google Scholar 

  14. Brigham KL, Stecenko AA . Gene therapy for acute lung injury Intens Care Med 2000 26: S119–S123

    Article  Google Scholar 

  15. Artigas A et al. The American–European Consensus Conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome Am J Respir Crit Care Med 1998 157: 1332–1347

    Article  CAS  PubMed  Google Scholar 

  16. Fein AM, Abraham EM . Can we make sense out of cytokines? Chest 2000 117: 932–934

    Article  CAS  PubMed  Google Scholar 

  17. Rogy MA et al. Human tumor necrosis factor receptor (p55) and interleukin 10 gene transfer in the mouse reduces mortality to lethal endotoxemia and also attenuates local inflammatory responses J Exp Med 1995 181: 2289–2293

    Article  CAS  PubMed  Google Scholar 

  18. Kumasaka T et al. Role of the intercellular adhesion molecule-1 (ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice J Clin Invest 1996 97: 2362–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burch RM, Mahan LC . Oligonucleotides antisense to the interleukin 1 receptor mRNA block the effects of interleukin 1 in cultured murine and human fibroblasts and in mice J Clin Invest 1991 88: 1190–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rojanasaakul Y et al. Antisense inhibition of silica-induced tumor necrosis factor in alveolar macrophages J Biol Chem 1997 272: 3910–3914

    Article  Google Scholar 

  21. Conary JT et al. Protection of rabbit lungs from endotoxin injury by in vivo hyperexpression of the prostaglandin G/H synthase gene J Clin Invest 1994 93: 1834–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee JC et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis Nature 1994 372: 739–745

    Article  CAS  PubMed  Google Scholar 

  23. Freshney NW et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27 Cell 1994 78: 1039–1049

    Article  CAS  PubMed  Google Scholar 

  24. Denham W et al. Inhibition of p38 mitogen activate kinase attenuates the severity of pancreatitis-induced adult respiratory distress syndrome Crit Care Med 2000 28: 2567–2572

    Article  CAS  PubMed  Google Scholar 

  25. Maines MD, Trakshel GM, Kutty RK . Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible J Biol Chem 1986 261: 411–419

    CAS  PubMed  Google Scholar 

  26. Maines MD . The heme oxygenase system: a regulator of second messenger gases Annu Rev Pharmacol Toxicol 1997 37: 517–554

    Article  CAS  PubMed  Google Scholar 

  27. Verma A et al. Carbon monoxide: a putative neural messenger Science 1993 259: 381–384

    Article  CAS  PubMed  Google Scholar 

  28. Otterbein LE, Mantell LL, Choi AM . Carbon monoxide provides protection against hyperoxic lung injury Am J Physiol 1999 276: L688–L694

    CAS  PubMed  Google Scholar 

  29. Ramos KS, Lin H, McGrath JJ . Modulation of cyclic guanosine monophosphate levels in cultured aortic smooth muscle cells by carbon monoxide Biochem Pharmacol 1989 38: 1368–1370

    Article  CAS  PubMed  Google Scholar 

  30. Otterbein LE et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway Nat Med 2000 6: 422–428

    Article  CAS  PubMed  Google Scholar 

  31. Otterbein LE, Sylvester SL, Choi AM . Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1 Am J Respir Cell Mol Biol 1995 13: 595–601

    Article  CAS  PubMed  Google Scholar 

  32. Willis D, Moore AR, Frederick R, Willoughby DA . Heme oxygenase: a novel target for the modulation of the inflammatory response Nat Med 1996 2: 87–90

    Article  CAS  PubMed  Google Scholar 

  33. Otterbein LE et al. Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury J Clin Invest 1999 103: 1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inoue S et al. Transfer of the heme oxygenase-1 cDNA by a replication-deficient adenovirus enhances IL-10 production from alveolar macrophages that attenuates LPS-induced acute lung injury in mice Hum Gene Ther 2001 12: 967–979

    Article  CAS  PubMed  Google Scholar 

  35. Jakab GJ, Astry CL, Glen AW . Alveolitis induced by influenza virus Am Rev Respir Dis 1983 128: 730–739

    CAS  PubMed  Google Scholar 

  36. Ginsberg HS, Horsfall FL Jr . Quantitative aspects of the multiplication of influenza A virus in the mouse lung J Exp Med 1952 95: 135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCoubrey WK, Huang TJ, Maines MD . Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3 Eur J Biochem 1997 247: 725–732

    Article  CAS  PubMed  Google Scholar 

  38. Choi AM et al. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury Am J Respir Cell Biol 1996 15: 9–19

    Article  CAS  Google Scholar 

  39. Stocker R, Yamamoto Y, Ames BN . Bilirubin is an antioxidant of possible physiological importance Science 1987 235: 1043–1046

    Article  CAS  PubMed  Google Scholar 

  40. Balla G et al. Ferritin: a cytoprotective antioxidant strategem of endothelium J Biol Chem 1992 267: 18148–18153

    CAS  PubMed  Google Scholar 

  41. Yap KL, Ada GL, McKenzie IFC . Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus Nature 1978 273: 238–239

    Article  CAS  PubMed  Google Scholar 

  42. Dennery PA et al. Heme oxygenase-mediated resistance to oxygen toxicity in hamster fibroblasts J Biol Chem 1997 272: 14937–14942

    Article  CAS  PubMed  Google Scholar 

  43. Yang L, Quan S, Abraham NG . Retrovirus-mediated gene transfer into endothelial cells protects against oxidant-induced injury Am J Physiol 1999 277: L127–L133

    Article  CAS  PubMed  Google Scholar 

  44. Takizawa T et al. Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells J Gen Virol 1993 74: 2347–2355

    Article  CAS  PubMed  Google Scholar 

  45. Hinshaw VS, Olsen CW, Kybdahl-Sissoko N, Evans D . Apoptosis: a mechanism of cell killing by influenza A and B virus J Virol 1994 75: 3667–3673

    Article  Google Scholar 

  46. Mori I et al. In vivo induction of apoptosis by influenza virus J Gen Virol 1995 76: 2869–2873

    Article  CAS  PubMed  Google Scholar 

  47. Kuwano K, Hara N . Signal transduction pathways of apoptosis and inflammation induced by the tumor necrosis factor family Am J Respir Cell Mol Biol 2000 22: 147–149

    Article  CAS  PubMed  Google Scholar 

  48. Fujimoto I, Takizawa T, Ohba Y, Nakanishi Y . Co-expression of Fas and Fas-ligand on the surface of influenza virus-infected cells Cell Death Diff 1998 5: 426–431

    Article  CAS  Google Scholar 

  49. Balachandran S et al. Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/caspase-8 death signaling pathway J Virol 2000 74: 1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brouard S et al. Carbon monoxide generated by hemeoxygenase suppresses endothelial cell apoptosis J Exp Med 2000 192: 1015–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beg AA, Baltimore D . An essential role for NF-kB in preventing TNF-a-induced cell death Science 1996 274: 782–784

    Article  CAS  PubMed  Google Scholar 

  52. Antwerp DJ et al. Suppression of TNF-a-induced apoptosis by NF-kB Science 1996 284: 787–789

    Article  Google Scholar 

  53. Hida A et al. Nuclear factor-kB and caspases co-operatively regulate the activation and apoptosis of human macrophages Immunology 2000 99: 553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suzuki S et al. Influenza A virus infection increase IgE production and airway responsiveness in aerosolized antigen-exposed mice J Allergy Clin Immunol 1998 102: 732–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tobita K, Sugiura A, Enomoto C, Furuyama M . Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin Med Microbiol Immunol 1975 162: 9–14

    Article  CAS  PubMed  Google Scholar 

  56. Bett AJ, Haddara W, Prevec L, Graham FL . An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3 Proc Natl Acad Sci USA 1994 91: 8802–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Graham FL, van der Eb AJ . A new technique for the assay of infectivity of human adenovirus 5 DNA J Virol 1973 52: 456–467

    Article  CAS  Google Scholar 

  58. Shibahara S, Muller R, Taguchi H, Yoshida T . Cloning and expression of cDNA for rat heme oxygenase Proc Natl Acad Sci USA 1985 82: 7865–7869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hersh J, Crystal RG, Bewig B . Modulation of gene expression after replication-deficient, recombinant adenovirus-mediated gene transfer by the product of a second adenovirus vector Gene Therapy 1995 2: 124–131

    CAS  PubMed  Google Scholar 

  60. Gavrieli Y, Sherman Y, Ben-Sasson, SA . Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation J Cell Biol 1992 119: 493–501

    Article  CAS  PubMed  Google Scholar 

  61. Kawasaki M et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by caspase inhibitor Am J Pathol 2000 157: 597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nicholson DW et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis Nature 1995 376: 37–40

    Article  CAS  PubMed  Google Scholar 

  63. Datta R et al. Activation of a CrmA-insentive, p35-sensitive pathway in ionizing radiation-induced apoptosis J Biol Chem 1997 272: 956–969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashiba, T., Suzuki, M., Nagashima, Y. et al. Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice. Gene Ther 8, 1499–1507 (2001). https://doi.org/10.1038/sj.gt.3301540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301540

Keywords

This article is cited by

Search

Quick links