Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Creation of a new transgene cloning site near the right ITR of Ad5 results in reduced enhancer interference with tissue-specific and regulatable promoters

Abstract

Tissue-specific transgene expression is a valuable research tool and is of great importance in delivering toxic gene products with adenovirus vectors to tumors. Limiting cytotoxic gene expression to the target cells is highly desirable. While a number of successful applications of tissue- and tumor-specific gene expression using Ad vectors has been reported, cloning of some promoters into Ad vectors resulted in modulation or loss of tissue specificity. This phenomenon is likely the result of the interaction of E1A enhancer (and possibly other Ad sequences) with the promoter cloned in the E1 region. We have compared performance parameters of prostate-specific and tet-regulatable promoters in plasmids containing the terminal repeat sequences of Ad5 with or without the E1A enhancer. Subsequently, adenoviral vectors were constructed containing identical expression units either in the E1 region or near the right ITR, and tested in several cell lines. Here, we report that promoters placed near the right ITR of Ad5 retain higher selectivity and lower background expression in both plasmid and adenovirus vectors. We confirm that the E1A enhancer can interfere with the desired activity of nearby promoters, and describe an alternative transgene insertion site for construction of Ad vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Levrero M et al. Defective and nondefective adenovirus vectors for expressing foreign genes in vitro and in vivo Gene 1991 101: 195–202

    Article  CAS  PubMed  Google Scholar 

  2. Baskar JF et al. The enhancer domain of the human cytomegalovirus major immediate–early promoter determines cell type-specific expression in transgenic mice J Virol 1996 70: 3207–3214

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Baldwin HS, Mickanin C, Buck C . Adenovirus-mediated gene transfer during initial organogenesis in the mammalian embryo is promoter-dependent and tissue-specific Gene Therapy 1997 4: 1142–1149

    Article  CAS  PubMed  Google Scholar 

  4. Shering AF et al. Cell type-specific expression in brain cell cultures from a short human cytomegalovirus major immediate–early promoter depends on whether it is inserted into herpesvirus or adenovirus vectors J Gen Virol 1997 78: 445–459

    Article  CAS  PubMed  Google Scholar 

  5. Haack A et al. Highly sensitive and species-specific assay for quantification of human transgene expression levels Haemophilia 1999 5: 334–339

    Article  CAS  PubMed  Google Scholar 

  6. Acsadi G et al. Interferons impair early transgene expression by adenovirus-mediated gene transfer in muscle cells J Mol Med 1998 76: 442–450

    Article  CAS  PubMed  Google Scholar 

  7. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers J Virol 1998 72: 4212–4223

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gutierrez AA, Lemoine NR, Sikora K . Gene therapy for cancer (see comments) Lancet 1992 339: 715–721

    Article  CAS  PubMed  Google Scholar 

  9. Arbuthnot PB et al. In vitro and in vivo hepatoma cell-specific expression of a gene transferred with an adenoviral vector Hum Gene Ther 1996 7: 1503–1514

    Article  CAS  PubMed  Google Scholar 

  10. Dematteo RP et al. Engineering tissue-specific expression of a recombinant adenovirus: selective transgene transcription in the pancreas using the amylase promoter J Surg Res 1997 72: 155–161

    Article  CAS  PubMed  Google Scholar 

  11. Griscelli F et al. Heart-specific targeting of beta-galactosidase by the ventricle-specific cardiac myosin light chain 2 promoter using adenovirus vectors Hum Gene Ther 1998 9: 1919–1928

    Article  CAS  PubMed  Google Scholar 

  12. Navarro V et al. Efficient gene transfer and long-term expression in neurons using a recombinant adenovirus with a neuron-specific promoter Gene Therapy 1999 6: 1884–1892

    Article  CAS  PubMed  Google Scholar 

  13. Steiner MS, Zhang Y, Carraher J, Lu Y . In vivo expression of prostate-specific adenoviral vectors in a canine model Cancer Gene Ther 1999 6: 456–464

    Article  CAS  PubMed  Google Scholar 

  14. Babiss LE, Friedman JM, Darnell JE Jr . Cellular promoters incorporated into the adenovirus genome: effects of viral regulatory elements on transcription rates and cell specificity of albumin and beta-globin promoters Mol Cell Biol 1986 6: 3798–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imler JL et al. Targeting cell-specific gene expression with an adenovirus vector containing the lacZ gene under the control of the CFTR promoter Gene Therapy 1996 3: 49–58

    CAS  PubMed  Google Scholar 

  16. Ring CJ, Harris JD, Hurst HC, Lemoine NR . Suicide gene expression induced in tumour cells transduced with recombinant adenoviral, retroviral and plasmid vectors containing the ERBB2 promoter Gene Therapy 1996 3: 1094–1103

    CAS  PubMed  Google Scholar 

  17. Shi Q, Wang Y, Worton R . Modulation of the specificity and activity of a cellular promoter in an adenoviral vector Hum Gene Ther 1997 8: 403–410

    Article  CAS  PubMed  Google Scholar 

  18. Hatfield L, Hearing P . Redundant elements in the adenovirus type 5 inverted terminal repeat promote bidirectional transcription in vitro and are important for virus growth in vivo Virology 1991 184: 265–276

    Article  CAS  PubMed  Google Scholar 

  19. Imperiale MJ, Hart RP, Nevins JR . An enhancer-like element in the adenovirus E2 promoter contains sequences essential for uninduced and E1A-induced transcription Proc Natl Acad Sci USA 1985 82: 381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang TT, Sinai P, Kitts PA, Kain SR . Quantification of gene expression with a secreted alkaline phosphatase reporter system Biotechniques 1997 23: 1110–1114

    Article  CAS  PubMed  Google Scholar 

  21. Hearing P, Shenk T . The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element Cell 1983 33: 695–703

    Article  CAS  PubMed  Google Scholar 

  22. Steinwaerder DS, Lieber A . Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo Gene Therapy 2000 7: 556–567

    Article  CAS  PubMed  Google Scholar 

  23. Hearing P, Shenk T . The adenovirus type 5 E1A enhancer contains two functionally distinct domains: one is specific for E1A and the other modulates all early units in cis Cell 1986 45: 229–236

    Article  CAS  PubMed  Google Scholar 

  24. Bruder JT, Hearing P . Nuclear factor EF-1A binds to the adenovirus E1A core enhancer element and to other transcriptional control regions Mol Cell Biol 1989 9: 5143–5153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vassaux G, Hurst HC, Lemoine NR . Insulation of a conditionally expressed transgene in an adenoviral vector Gene Ther 1999 6: 1192–1197

    Article  CAS  PubMed  Google Scholar 

  26. Grable M, Hearing P . Cis and trans requirements for the selective packaging of adenovirus type 5 DNA J Virol 1992 66: 723–731

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Berger J et al. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells Gene 1988 66: 1–10

    Article  CAS  PubMed  Google Scholar 

  28. Eggermont J, Proudfoot NJ . Poly(A) signals and transcriptional pause sites combine to prevent interference between RNA polymerase II promoters EMBO J 1993 12: 2539–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kasper S et al. Selective activation of the probasin androgen-responsive region by steroid hormones J Mol Endocrinol 1999 22: 313–325

    Article  CAS  PubMed  Google Scholar 

  30. Schuur ER et al. Prostate-specific antigen expression is regulated by an upstream enhancer J Biol Chem 1996 271: 7043–7051

    Article  CAS  PubMed  Google Scholar 

  31. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters Proc Natl Acad Sci USA 1992 89: 5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rubinchik S et al. Adenoviral vector which delivers FasL-GFP fusion protein regulated by the tet-inducible expression system Gene Therapy 2000 7: 875–885

    Article  CAS  PubMed  Google Scholar 

  33. Massie B et al. Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette J Virol 1998 72: 2289–2296

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Schepp and Adriana Galue for technical support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinchik, S., Lowe, S., Jia, Z. et al. Creation of a new transgene cloning site near the right ITR of Ad5 results in reduced enhancer interference with tissue-specific and regulatable promoters. Gene Ther 8, 247–253 (2001). https://doi.org/10.1038/sj.gt.3301364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301364

Keywords

This article is cited by

Search

Quick links