Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Herpesvirus saimiri-based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro

Abstract

In order to achieve a high efficiency of gene delivery into rare cell types like stem cells the use of viral vectors is presently without alternative. An ideal stem cell gene therapy vector would be able to infect primitive progenitor cells and sustain or activate gene expression in differentiated progeny. However, many viral vectors are inactivated when introduced in developing systems where cell differentiation occurs. To this end, we have developed a mouse in vitro model for testing herpesvirus saimiri (HVS)-based gene therapy vectors. We demonstrate here for the first time that HVS is able to infect totipotent mouse embryonic stem (ES) cells with high efficiency. We have transduced ES cells with a recombinant virus carrying the enhanced green fluorescent protein (EGFP) gene and the neomycin resistance gene (NeoR) driven by a CMV promoter and the SV40 promoter, respectively. ES cells maintain the viral episomal genome and can be terminally differentiated into mature haematopoietic cells. Moreover, heterologous gene expression is maintained throughout in vitro differentiation. Besides its obvious use in gene therapy, this unique expression system has wide ranging applications in studies aimed at understanding gene function and expression in cell differentiation and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Doetschman TC et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium J Embryol Exp Morph 1985 87: 27–45

    CAS  PubMed  Google Scholar 

  2. Wiles MV, Keller G . Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture Development 1991 111: 259–267

    CAS  PubMed  Google Scholar 

  3. Faust N et al. An in vitro differentiation system for the examination of transgene activation in mouse macrophages DNA Cell Biol 1994 13: 901–907

    Article  CAS  PubMed  Google Scholar 

  4. Lindenbaum MH, Grosveld F . An in vitro globin gene switching model based on differentiated embryonic stem cells Genes Dev 1990 4: 2075–2085

    Article  CAS  PubMed  Google Scholar 

  5. Lien LL, Lee Y, Orkin SH . Regulation of the myeloid-cell-expressed human gp91-phox gene as studied by transfer of yeast artificial chromosome clones into embryonic stem cells: suppression of a variegated cellular pattern of expression requires a full complement of distant cis elements Mol Cell Biol 1997 17: 2279–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orkin S . Development of the hematopoietic system Curr Op Genetics Dev 1996 6: 597–602

    Article  CAS  Google Scholar 

  7. Bonifer C et al. Developmental changes in the differentiation capacity of haematopoietic stem cells Immunol Today 1998 19: 236–241

    Article  CAS  PubMed  Google Scholar 

  8. Laker C et al. Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation J Virol 1998 72: 339–348

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsuki T et al. Transgenesis by adenovirus-mediated gene transfer into mouse zona-free eggs Nature Biotech 1998 14: 982–985

    Article  Google Scholar 

  10. Wilson C, Bellen HJ, Gehring WJ . Position effects on eucaryotic gene expression Ann Rev Cell Biol 1990 6: 679–714

    Article  CAS  PubMed  Google Scholar 

  11. Stevenson AJ et al. Assessment of herpesvirus saimiri as a potential human gene therapy vector J Med Virol 1999 57: 269–277

    Article  CAS  PubMed  Google Scholar 

  12. Fleckenstein B, Desrosiers RC . The Herpesviruses Plenum: New York 1992

    Google Scholar 

  13. Jung JU, Desrosiers RC . Encyclopaedia of Virology. Saunders: Philadelphia 1994

  14. Moore PS et al. Primary characterisation of a herpesvirus agent associated with kaposis-sarcoma J Virol 1996 70: 549–558

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Russo JJ et al. Nucleotide sequence of the Karposi's sarcoma associated herpesvirus (HHV8) Proc Natl Acad Sci USA 1996 93: 14862–14867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Desrosiers RC, Falk LA . Herpesvirus saimiri strain variability J Virol 1982 43: 352–356

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Medveczky P et al. Classification of herpesvirus saimiri into 3 groups based on extreme variations in a DNA region required for oncogenicity J Virol 1984 52: 938–944

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Biesinger B et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri Proc Natl Acad Sci USA 1992 89: 3116–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mittrucker H-W et al. CD2-mediated autocrine growth of herpesvirus saimiri-transformed human lymphocytes J Exp Med 1992 176: 909–913

    Article  CAS  PubMed  Google Scholar 

  20. Grassmann R, Fleckenstein B . Selectable recombinant herpesvirus saimiri is capable of persisting in a human T-cell line J Virol 1989 63: 818–821

    Google Scholar 

  21. Simmer B et al. Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines J Gen Virol 1991 72: 1953–1958

    Article  PubMed  Google Scholar 

  22. Latchman DS . Genetic Manipulation of the Nervous System Academic Press: London 1996

    Google Scholar 

  23. Knust E et al. Cloning of the herpesvirus saimiri DNA fragments representing the entire L-region of the genome Gene 1983 25: 281–289

    Article  CAS  PubMed  Google Scholar 

  24. Walters MC et al. Transcriptional enhancers act in cis to suppress position-effect variegation Genes Dev 1996 10: 185–195

    Article  CAS  PubMed  Google Scholar 

  25. Walters MC et al. Enhancers increase the probability but not the level of gene expression Proc Natl Acad Sci USA 1995 92: 7125–7129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Desrosiers RC et al. A region of the Herpesvirus Saimiri genome required for oncogenicity Science 1985 228: 184–187

    Article  CAS  PubMed  Google Scholar 

  27. Bonifer C et al. Dissection of the locus control function located on the chicken lysozyme gene domain in transgenic mice Nucleic Acids Res 1994 22: 4202–4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feng Y-Q, Alami R, Bouhassira EE . Enhancer-dependent transcriptional oscillations in mouse erythroleukemia cells Mol Cell Biol 1999 19: 4907–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bonifer C et al. Prerequisites for tissue specific and position independent expression of a gene locus in transgenic mice J Mol Med 1996 74: 663–671

    Article  CAS  PubMed  Google Scholar 

  30. Fraser P, Grosveld F . Locus control regions, chromatin activation and transcription Curr Opin Cell Biol 1998 10: 361–365

    Article  CAS  PubMed  Google Scholar 

  31. Kelleher ZT et al. Epstein–Barr-based episomal chromosomes shuttle 100kb of self-replicating circular human DNA in mouse cells Nat Biotech 1998 16: 762–768

    Article  CAS  Google Scholar 

  32. Robertson EJ . Embryo-derived stem cell lines. In: Robertson EJ (ed) Teratocarcinomas and Embryonic Stem Cells – a Practical Approach IRL Press: Oxford; Washington DC 1987 pp 71–112

    Google Scholar 

  33. Karasuyama H, Melchers F . Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4, or 5 using modified cDNA expression vectors Eur J Immunol 1988 18: 97–104

    Article  CAS  PubMed  Google Scholar 

  34. Hirt B . Selective extraction of polyoma DNA from infected mouse cell cultures J Mol Biol 1967 26: 365–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Candlelighter's Trust to CB and SK, Yorkshire Cancer Research and the Medical Research Council to AW and the West Riding Medical Research Trust. We thank Prof A Markham for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, A., Clarke, D., Meredith, D. et al. Herpesvirus saimiri-based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro. Gene Ther 7, 464–471 (2000). https://doi.org/10.1038/sj.gt.3301130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301130

Keywords

This article is cited by

Search

Quick links