Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Transplantation of transduced nonhuman primate CD34+ cells using a gibbon ape leukemia virus vector: restricted expression of the gibbon ape leukemia virus receptor to a subset of CD34+ cells

Abstract

The transduction efficiencies of immunoselected rhesus macaque (Macaca mulatta) CD34+ cells and colony- forming progenitor cells based on polymerase chain reaction (PCR) analysis were comparable for an amphotropic Moloney murine leukemia virus (MLV) retroviral vector and a retroviral vector derived from the gibbon ape leukemia virus (GaLV) packaging cell line, PG13. On performing autologous transplantation studies using immunoselected CD34+ cells transduced with the GaLV envelope (env) retroviral vector, less than 1% of peripheral blood (PB) contained provirus. This was true whether bone marrow (BM) or cytokine-mobilized PB immunoselected CD34+ cells were reinfused. This level of marking was evident in two animals whose platelet counts never fell below 50000/μl and whose leukocyte counts had recovered by days 8 and 10 after having received 1.7 × 107 or greater of cytokine-mobilized CD34+ PB cells/kg. Reverse transcriptase(RT)-PCR analysis of CD34+ subsets for both the GaLV and amphotropic receptor were performed. The expression of the GaLV receptor was determined to be restricted to CD34+ Thy-1+ cells, and both CD34+ CD38+ and CD34+ CD38dim cells, while the amphotropic receptor was present on all CD34+ cell subsets examined. Our findings suggest that, in rhesus macaques, PG13-derived retroviral vectors may only be able to transduce a subset of CD34+ cells as only CD34+Thy-1+ cells express the GaLV receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hughes PFD, Eaves CG, Hogge DE, Humphries RK . High-efficiency gene transfer to human hematopoietic cells maintained in long-term marrow culture Blood 1989 74: 1915–1922

    CAS  PubMed  Google Scholar 

  2. Moritz T, Keller DC, Williams DA . Human cord blood cells as targets for gene transfer: potential use in genetic therapies of severe combined immunodeficiency disease J Exp Med 1993 178: 529–536

    Article  CAS  PubMed  Google Scholar 

  3. Bodine DM et al. Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells Blood 1993 82: 1975–1980

    CAS  PubMed  Google Scholar 

  4. Hanley ME, Nolta JA, Parkman R, Kohn DB . Umbilical cord blood cell transduction by retroviral vectors: preclinical studies to optimize gene transfer Blood Cells 1994 20: 539–543

    CAS  PubMed  Google Scholar 

  5. Flasshove M et al. Ex vivo expansion and selection of human CD34+ peripheral blood progenitor cells after introduction of a mutated dihydrofolate reductase cDNA via retroviral gene transfer Blood 1995 85: 566–574

    CAS  PubMed  Google Scholar 

  6. Xu LC et al. Growth factors and stromal support generate very efficient retroviral transduction of peripheral blood CD34+ cells from Gaucher patients Blood 1995 86: 141–146

    CAS  PubMed  Google Scholar 

  7. Xu LC et al. Long-term in vivo expression of the human glucocerebrosidase gene in non-human primates after CD34+ hematopoietic cell transduction with cell-free retroviral vector preparations Proc Natl Acad Sci USA 1995 92: 4372–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunbar CE et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation Blood 1995 85: 3048–3057

    CAS  PubMed  Google Scholar 

  9. Kohn DB et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency Nature Med 1995 1: 1017–1023

    Article  CAS  PubMed  Google Scholar 

  10. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luskey BD, Rosenblatt M, Szebo K, Williams DA . Stem cell factor, interleukin-3, and interleukin-6 promote retroviral-mediated gene transfer into murine hematopoietic stem cells Blood 1992 80: 396–402

    CAS  PubMed  Google Scholar 

  12. Berand A, Varas F, Gallego JM, Bueren JA . Ex vivo expansion and selection of retrovirally transduced bone marrow: an efficient methodology for gene-transfer to murine lympho-haemopoietic stem cells Br J Haemotol 1994 87: 6–17

    Article  Google Scholar 

  13. Muench MO et al. Progress in the ex vivo expansion of hematopoietic progenitors Leuk Lymphoma 1994 16: 1–11

    Article  CAS  PubMed  Google Scholar 

  14. Vanbeusechem VW, Bart-Baumeister JA, Hoogerbrugge PM, Valerio D . Influence of interleukin-3, interleukin-6, and stem cell factor on retroviral transduction of rhesus monkey CD34+ hematopoietic progenitor cells measured in vitro and in vivo Gene Therapy 1995 2: 245–255

    CAS  Google Scholar 

  15. Bordignon C et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients Science 1995 270: 470–475

    Article  CAS  PubMed  Google Scholar 

  16. O’Shaughnessy JA et al. Retroviral mediated gene transfer of the human multidrug resistance gene (MDR-1) into hematopoietic stem cells during autologous transplantation after intensive chemotherapy for metastatic breast cancer Hum Gene Ther 1994 5: 891–911

    Article  PubMed  Google Scholar 

  17. Dunbar CE et al. Improved retroviral gene transfer into murine and rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor Proc Natl Acad Sci USA 1996 93: 11871–11876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller AD et al. Construction and properties of retrovirus packaging cells based on the gibbon ape leukemia virus J Virol 1991 65: 2220–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Johann SV, Gibbons JJ, O’Hara B . GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus J Virol 1992 66: 1635–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller AD . Cell-surface receptors for retroviruses and implications for gene transfer Proc Natl Acad Sci USA 1996 93: 11407–11413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kavanaugh MP et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters Proc Natl Acad Sci USA 1994 91: 7071–7075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller DG, Miller AD . A family of retroviruses that utilize related phosphate transporters for cell entry J Virol 1994 68: 8270–8276

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Von Kalle C, Kiem HP, Goehle S, Darovsky B . Increased gene transfer into human hematopoietic progenitor cells by extended in vitro exposure to a pseudotyped retroviral vector Blood 1994 84: 2890–2897

    CAS  PubMed  Google Scholar 

  24. Vandendriessche T et al. Inhibition of clinical human immunodeficiency virus (HIV) type 1 isolates in primary CD4+ T lymphocytes by retroviral vectors expressing anti-HIV genes J Virol 1995 69: 4045–4052

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Donahue RE et al. Peripheral blood CD34+ cells differ from bone marrow CD34+ cells in Thy-1 expression and cell cycle status in non-human primates mobilized or not mobilized with granulocyte colony-stimulating factor and/or stem cell factor Blood 1996 87: 1644–1653

    CAS  PubMed  Google Scholar 

  26. Brenner MK et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients Lancet 1993 342: 1134–1137

    Article  CAS  PubMed  Google Scholar 

  27. Deisseroth AB et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML Blood 1994 83: 3068–3076

    CAS  PubMed  Google Scholar 

  28. Bunnell BA et al. High-efficiency retroviral-mediated gene transfer into human and non-human primate peripheral blood lymphocytes Proc Natl Acad Sci USA 1995 92: 7739–7743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bunnell BA et al. Efficient in vivo marking of primary CD4+ T lymphocytes in non-human primates using a gibbon ape leukemia virus derived retroviral vector Blood 1997 89: 1987–1995

    CAS  PubMed  Google Scholar 

  30. Kiem HP et al. Gene transfer into marrow repopulating cells: comparisons between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons Blood 1997 90: 4638–4645

    CAS  PubMed  Google Scholar 

  31. Bender JG, To LB, Williams S, Schwartzberg LS . Defining a therapeutic dose of stem cells J Hematother 1992 1: 329–341

    Article  CAS  PubMed  Google Scholar 

  32. Mavroudis D et al. CD34+ cell dose predicts survival, post-transplant morbidity, and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies Blood 1996 88: 3223–3229

    CAS  PubMed  Google Scholar 

  33. Bender JG et al. Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry Blood 1991 77: 2591–2596

    CAS  PubMed  Google Scholar 

  34. Craig W, Kay R, Cutler RL, Lansdorp PM . Expression of Thy-1 on human hematopoietic progenitor cells J Exp Med 1993 177: 1331–1342

    Article  CAS  PubMed  Google Scholar 

  35. Terstappen LWMM et al. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+ CD38 progenitor cells Blood 1991 77: 1218–1227

    CAS  PubMed  Google Scholar 

  36. Osawa M, Hanada K, Hamada H, Nakaguchi H . Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell Science 1996 273: 242–245

    Article  CAS  PubMed  Google Scholar 

  37. Orlic D et al. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction Proc Natl Acad Sci USA 1996 93: 11097–11102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Donahue RE et al. Transplantation and gene transfer of the human glucocerebrosidase gene into immunoselected primate CD34+ Thy-1+ cells Blood 1996 88: 4166–4172

    CAS  PubMed  Google Scholar 

  39. Miller AD, Buttimore C . Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production Mol Cell Biol 1986 6: 2895–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller AD, Rosman G . Improved retroviral vectors for gene transfer and expression Biotechniques 1989 7: 980–990

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunnell, B., Kluge, K., Lee-Lin, SQ. et al. Transplantation of transduced nonhuman primate CD34+ cells using a gibbon ape leukemia virus vector: restricted expression of the gibbon ape leukemia virus receptor to a subset of CD34+ cells. Gene Ther 6, 48–56 (1999). https://doi.org/10.1038/sj.gt.3300808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300808

Keywords

This article is cited by

Search

Quick links