Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

High-density SNP analysis of 642 Caucasian families with rheumatoid arthritis identifies two new linkage regions on 11p12 and 2q33

Abstract

We have completed a genome wide linkage scan using >5700 informative single-nucleotide polymorphism (SNP) markers (Illumina IV SNP linkage panel) in 642 Caucasian families containing affected sibling pairs with rheumatoid arthritis (RA), ascertained by the North American Rheumatoid Arthritis Consortium. The results show striking new evidence of linkage at chromosomes 2q33 and 11p12 with logarithm of odds (LOD) scores of 3.52 and 3.09, respectively. In addition to a strong and broad linkage interval surrounding the major histocompatibility complex (LOD>16), regions with LOD>2.5 were observed on chromosomes 5 and 10. Additional linkage evidence (LOD scores between 1.46 and 2.35) was also observed on chromosomes 4, 7, 12, 16 and 18. This new evidence for multiple regions of genetic linkage is partly explained by the significantly increased information content of the Illumina IV SNP linkage panel (75.6%) compared with a standard microsatellite linkage panel utilized previously (mean 52.6%). Stratified analyses according to whether or not the sibling pair members showed elevated anticyclic citrullinated peptide titers indicates significant variation in evidence for linkage among strata on chromosomes 4, 5, 6 and 7. Overall, these new linkage data should reinvigorate efforts to utilize positional information to identify susceptibility genes for RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Firestein GS . Evolving concepts of rheumatoid arthritis. Nature 2003; 423: 356–361.

    Article  CAS  PubMed  Google Scholar 

  2. Seldin MF, Amos CI, Ward R, Gregersen PK . The genetics revolution and the assault on rheumatoid arthritis. Arthritis Rheum 1999; 42: 1071–1079.

    Article  CAS  PubMed  Google Scholar 

  3. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 2000; 43: 30–37.

    Article  CAS  PubMed  Google Scholar 

  4. Risch N . Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 1990; 46: 222–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gregersen PK . Genetics of rheumatoid arthritis: confronting complexity. Arthritis Res 1999; 1: 37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hall FC, Hall FC, Weeks DE, Camilleri JP, Williams LA, Amos N et al. Influence of the HLA-DRB1 locus on susceptibility and severity in rheumatoid arthritis. Qjm 1996; 89: 821–829.

    Article  CAS  PubMed  Google Scholar 

  7. Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Etzel C, et al., North American Rheumatoid Arthritis Consortium. Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum 2003; 48: 906–916.

    Article  CAS  PubMed  Google Scholar 

  8. Cornelis F, Faure S, Martinez M, Prud'homme JF, Fritz P, Dib C, et al., ECRAF. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA 1998; 95: 10746–10750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gregersen PK, Silver J, Winchester RJ . The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30: 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  10. Mulcahy B, Waldron-Lynch F, McDermott MF, Adams C, Amos CI, Zhu DK et al. Genetic variability in the tumor necrosis factor-lymphotoxin region influences susceptibility to rheumatoid arthritis. Am J Hum Genet 1996; 59: 676–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jawaheer D, Li W, Graham RR, Chen W, Damle A, Xiao X et al. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am J Hum Genet 2002; 71: 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. du Montcel ST, Michou L, Petit-Teixeira E, Osorio J, Lemaire I, Lasbleiz S et al. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum 2005; 52: 1063–1068.

    Article  PubMed  Google Scholar 

  13. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee AT, Li W, Liew A, Bombardier C, Weisman M, Massarotti EM et al. The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun 2005; 6: 129–133.

    Article  CAS  PubMed  Google Scholar 

  15. Simkins HM, Merriman ME, Highton J, Chapman PT, O'Donnell JL, Jones PB et al. Association of the PTPN22 locus with rheumatoid arthritis in a New Zealand Caucasian cohort. Arthritis Rheum 2005; 52: 2222–2225.

    Article  CAS  PubMed  Google Scholar 

  16. van Oene M, Wintle RF, Liu X, Yazdanpanah M, Gu X, Newman B et al. Association of the lymphoid tyrosine phosphatase R620W variant with rheumatoid arthritis, but not Crohn's disease, in Canadian populations. Arthritis Rheum 2005; 52: 1993–1998.

    Article  CAS  PubMed  Google Scholar 

  17. Seldin MF, Shigeta R, Laiho K, Li H, Saila H, Savolainen A et al. Finnish case-control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun 2005; 6: 720–722.

    Article  CAS  PubMed  Google Scholar 

  18. Gregersen PK . Pathways to gene identification in rheumatoid arthritis: PTPN22 and beyond. Immunol Rev 2005; 204: 74–86.

    Article  CAS  PubMed  Google Scholar 

  19. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338.

    Article  CAS  PubMed  Google Scholar 

  20. Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon P . A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun 2004; 5: 678–680.

    Article  CAS  PubMed  Google Scholar 

  21. Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves' disease. J Clin Endocrinol Metab 2004; 89: 5862–5865.

    Article  CAS  PubMed  Google Scholar 

  22. Kyogoku C, Langefeld CD, Ortmann WA, Lee A, Selby S, Carlton VE et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004; 75: 504–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy MV, Johansson M, Sturfelt G, Jonsen A, Gunnarsson I, Svenungsson E et al. The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the associationof PDCD1. Genes Immun 2005; 6: 658–662.

    Article  CAS  PubMed  Google Scholar 

  24. Hinks A, Barton A, John S, Bruce I, Hawkins C, Griffiths CE et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum 2005; 52: 1694–1699.

    CAS  PubMed  Google Scholar 

  25. Viken MK, Amundsen SS, Kvien TK, Boberg KM, Gilboe IM, Lilleby V et al. Association analysis of the 1858C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun 2005; 6: 271–273.

    Article  CAS  PubMed  Google Scholar 

  26. Carlton VE, Hu X, Chokkalingam AP, Schrodi SJ, Brandon R, Alexander HC et al. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet 2005; 77: 567–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW et al. Replication of putative candidate-gene associations with rheumatoid arthritis in 14,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77: 1044–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. MacKay K, Eyre S, Myerscough A, Milicic A, Barton A, Laval S et al. Whole-genome linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the United Kingdom. Arthritis Rheum 2002; 46: 632–639.

    Article  CAS  PubMed  Google Scholar 

  29. John S, Shephard N, Liu G, Zeggini E, Cao M, Chen W et al. Whole-genome scan, in a complex disease, using 11,245 single-nucleotide polymorphisms: comparison with microsatellites. Am J Hum Genet 2004; 75: 54–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Osorio Y, Fortea J, Bukulmez H, Petit-Teixeira E, Michou L, Pierlot C et al. Dense genome-wide linkage analysis of rheumatoid arthritis, including covariates. Arthritis Rheum 2004; 50: 2757–2765.

    Article  Google Scholar 

  31. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  32. Fisher SA, Lanchbury JS, Lewis CM . Meta-analysis of four rheumatoid arthritis genome-wide linkage studies: confirmation of a susceptibility locus on chromosome 16. Arthritis Rheum 2003; 48: 1200–1206.

    Article  CAS  PubMed  Google Scholar 

  33. Murray SS, Oliphant A, Shen R, McBride C, Steeke RJ, Shannon SG et al. A highly informative SNP linkage panel for human genetic studies. Nat Methods 2004; 1: 113–117.

    Article  CAS  PubMed  Google Scholar 

  34. Sawcer SJ, Maranian M, Singlehurst S, Yeo T, Compston A, Daly MJ et al. Enhancing linkage analysis of complex disorders: an evaluation of high-density genotyping. Hum Mol Genet 2004; 13: 1943–1949.

    Article  PubMed  Google Scholar 

  35. Rijsdijk FV, Sham PC . Estimation of sib-pair IBD sharing and multipoint polymorphism information content by linear regression. Behav Genet 2002; 32: 211–220.

    Article  PubMed  Google Scholar 

  36. Jawaheer D, Lum RF, Amos CI, Gregersen PK, Criswell LA . Clustering of disease features within 512 multicase rheumatoid arthritis families. Arthritis Rheum 2004; 50: 736–741.

    Article  PubMed  Google Scholar 

  37. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM, Breedveld FC et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 2000; 43: 155–163.

    Article  CAS  PubMed  Google Scholar 

  39. Huizinga TW, Amos CI, van der Helm-van Mil AH, Chen W, van Gaalen FA, Jawaheer D et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 2005; 52: 3433–3438.

    Article  CAS  PubMed  Google Scholar 

  40. Irigoyen P, Lee AT, Wener MH, Li W, Kern M, Batliwalla F et al. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis. Arthritis Rheum 2005; 52: 3813–3818.

    Article  CAS  PubMed  Google Scholar 

  41. van Gaalen FA, Linn-Rasker SP, van Venrooij WJ, de Jong BA, Breedveld FC, Verweij CL et al. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum 2004; 50: 709–715.

    Article  CAS  PubMed  Google Scholar 

  42. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–606.

    Article  CAS  PubMed  Google Scholar 

  43. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603.

    Article  CAS  PubMed  Google Scholar 

  44. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG . Replication validity of genetic association studies. Nat Genet 2001; 29: 306–309.

    Article  CAS  PubMed  Google Scholar 

  45. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Gaalen FA, van Aken J, Huizinga TW, Schreuder GM, Breedveld FC, Zanelli E et al. Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheum 2004; 50: 2113–2121.

    Article  CAS  PubMed  Google Scholar 

  47. Verpoort KN, van Gaalen FA, van der Helm-van Mil AH, Schreuder GM, Breedveld FC, Huizinga TW et al. Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum 2005; 52: 3058–3062.

    Article  CAS  PubMed  Google Scholar 

  48. Newton JL, Harney SM, Timms AE, Sims AM, Rockett K, Darke C et al. Dissection of class III major histocompatibility complex haplotypes associated with rheumatoid arthritis. Arthritis Rheum 2004; 50: 2122–2129.

    Article  CAS  PubMed  Google Scholar 

  49. Batliwalla FM, Baechler EC, Xiao X, Li W, Balasubramanian S, Khalili H et al. Peripheral blood gene expression profiling in rheumatoid arthritis. Genes Immun 2005; 6: 388–397.

    Article  CAS  PubMed  Google Scholar 

  50. Shiozawa S, Hayashi S, Tsukamoto Y, Goko H, Kawasaki H, Wada T et al. Identification of the gene loci that predispose to rheumatoid arthritis. Int Immunol 1998; 10: 1891–1895.

    Article  CAS  PubMed  Google Scholar 

  51. John S, Shephard N, Chen S, Etzel C, Jawaheer D, Seldin M et al. Linkage analysis of rheumatoid arthritis in US and UK families reveals interactions between HLA-DRB1 and loci on chromosome 6q and 16p. Arthritis Rheum 2006, in press.

  52. Rodriguez MR, Nunez-Roldan A, Aguilar F, Valenzuela A, Garcia A, Gonzalez-Escribano MF . Association of the CTLA4 3′ untranslated region polymorphism with the susceptibility to rheumatoid arthritis. Hum Immunol 2002; 63: 76–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Abbas AR, Baldwin D, Ma Y, Ouyang W, Gurney A, Martin F et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 2005; 6: 319–331.

    Article  CAS  PubMed  Google Scholar 

  54. Sellick GS, Webb EL, Allinson R, Matutes E, Dyer MJ, Jonsson V et al. A high-density SNP genomewide linkage scan for chronic lymphocytic leukemia-susceptibility loci. Am J Hum Genet 2005; 77: 420–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  56. Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A, et al., International Multiple Sclerosis Genetics Consortium. A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 2005; 77: 454–467.

    Article  PubMed  Google Scholar 

  57. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  PubMed  Google Scholar 

  58. Ulgen A, Li W . Comparing SNP-marker-based and microsatellite-marker-based linkage analyses. BMC Genet 2005; 6 (Suppl 1): S13.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Erlich H, Bugawan T, Begovich AB, Scharf S, Griffith R, Saiki R et al. HLA-DR, DQ and DP typing using PCR amplification and immobilized probes. Eur J Immunogenet 1991; 18: 33–55.

    Article  CAS  PubMed  Google Scholar 

  60. Huang Q, Shete S, Amos CI . Ignoring linkage disequilibrium among tightly linked markers induces false-positive evidence of linkage for affected sib pair analysis. Am J Hum Genet 2004; 75: 1106–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Webb EL, Sellick GS, Houlston RS . SNPLINK: multipoint linkage analysis of densely distributed SNP data incorporating automated linkage disequilibrium removal. Bioinformatics 2005; 21: 3060–3061.

    Article  CAS  PubMed  Google Scholar 

  62. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  63. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  64. Kong A, Cox NJ . Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 1997; 61: 1179–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McPeek MS . Optimal allele-sharing statistics for genetic mapping using affected relatives. Genet Epidemiol 1999; 16: 225–249.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (RO1-AR44222 and Contract NO1-AR-2-2263) and by the National Arthritis Foundation. We thank Joseph Garsetti and Mark Hansen at Illumina Inc. for their efforts in support of this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C I Amos or P K Gregersen.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity's website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amos, C., Chen, W., Lee, A. et al. High-density SNP analysis of 642 Caucasian families with rheumatoid arthritis identifies two new linkage regions on 11p12 and 2q33. Genes Immun 7, 277–286 (2006). https://doi.org/10.1038/sj.gene.6364295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364295

Keywords

This article is cited by

Search

Quick links