Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenoviral vector transduction of the human deoxycytidine kinase gene enhances the cytotoxic and radiosensitizing effect of gemcitabine on experimental gliomas

Abstract

The aim of this work was to improve the cytotoxic and radiosensitizing effects of gemcitabine using a gene-directed enzyme prodrug therapy approach. Murine Gl261, rat C6 and human U373 glioma cell lines were transduced with an adenoviral vector encoding the human deoxycytidine kinase gene (Ad-HudCK). Intracranial tumors were established in C57BL/6 mice and Wistar rats using either wild-type or Ad-HudCK-transduced Gl261 and C6 glioma cells. In vitro growing cells and established tumors were treated with gemcitabine and irradiation either alone or in combination. Deoxycytidine kinase overexpression substantially increased both the toxic and radiosensitizing effects of gemcitabine in each cell line, but the enhancement rate varied: it was mild in the Gl261 cells and much stronger in the C6 and U373 cells. In vivo experiments showed a mild radiosensitizing effect of dCK overexpression both in the Gl261 and C6 models. The combination of dCK overexpression, gemcitabine treatment and irradiation improved the survival rate of C6 bearing rats significantly. In conclusion, overexpression of the dCK gene can improve the cytotoxic and radiosensitizing effect of gemcitabine both in vitro and in vivo in a tumor-specific manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Short SC . External beam and conformal radiotherapy in the management of gliomas. Acta Neurochir Suppl 2003; 88: 37–43.

    CAS  PubMed  Google Scholar 

  2. Irie N, Matsuo T, Nagata I . Protocol of radiotherapy for glioblastoma according to the expression of HIF-1. Brain Tumor Pathol 2004; 21: 1–6.

    Article  CAS  PubMed  Google Scholar 

  3. Lumniczky K, Safrany G . Cancer gene therapy: combination with radiation therapy and the role of bystander cell killing in the anti-tumor effect. Pathol Oncol Res 2006; 12: 118–124.

    Article  CAS  PubMed  Google Scholar 

  4. Hertel LW, Kroin JS, Misner JW, Tustin JM . Synthesis of 2-deoxy-2,2-difluoro-D-ribose and 2-deoxy-2,2-difluoro-D-ribofuranosyl nucleotides. J Org Chem 1988; 53: 2406–2409.

    Article  CAS  Google Scholar 

  5. Hertel LW, Boder GB, Kroin JS, Rinzel SM, Poore GA, Todd GC . Evaluation of the antitumor activity of gemcitabine. Cancer Res 1990; 50: 4417–4422.

    CAS  PubMed  Google Scholar 

  6. Lawrence TS, Davis MA, Hough A, Rehemtulla A . The role of apoptosis in 2′,2′-difluoro-2′-deoxycytidine (Gemcitabine)-mediated radiosensitization. Clin Cancer Res 2001; 7: 314–319.

    CAS  PubMed  Google Scholar 

  7. Horsman MR, Bohm L, Margison GP, Milas L, Rosier JF, Safrany G et al. Tumor radiosensitizers-current status of development of various approaches: report of an international atomic energy agency meeting. Int J Radiat Oncol Biol Phys 2006; 64: 551–561.

    Article  PubMed  Google Scholar 

  8. Gertler SZ, MacDonald D, Goodyear M, Forsyth P, Stewart DJ, Belanger K . NCIC-CTG phase II study of gemcitabine in patients with malignant glioma (IND94). Ann Oncol 2000; 11: 315–318.

    Article  CAS  PubMed  Google Scholar 

  9. Weller M, Streffer J, Wick W, Kortmann RD, Heiss E, Kuker W et al. Preirradiation gemcitabine chemotherapy for newly diagnosed glioblastoma. A phase II study. Cancer 2001; 91: 423–427.

    Article  CAS  PubMed  Google Scholar 

  10. Protzel C, Zimmermann U, Asse E, Kallwellis G, Klebingat KJ . Gemcitabine and radiotherapy in the treatment of brain metastases from transitional cell carcinoma of the bladder: a case report. J Neurooncol 2002; 57: 141–145.

    Article  PubMed  Google Scholar 

  11. Maraveyas A, Sgouros J, Upadhyay S, Abdel-Hamid AH, Holmes M, Lind M . Gemcitabine twice weekly as a radiosensitizer for the treatment of brain metastases in patients with carcinoma: a phase I study. Br J Cancer 2005; 92: 815–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szatmári T, Lumniczky K, Désaknai S, Trajcevski S, Hidvegi EJ, Hamada H et al. Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 2006; 97: 546–553.

    Article  PubMed  Google Scholar 

  13. Lumniczky K, Desaknai S, Mangel L, Szende B, Hamada H, Hidvegi EJ et al. Local tumor irradiation augments the antitumor effect of cytokine-producing autologous cancer cell vaccines in a murine glioma model. Cancer Gene Ther 2002; 9: 44–52.

    Article  CAS  PubMed  Google Scholar 

  14. Desaknai S, Lumniczky K, Esik O, Hamada H, Safrany G . Local tumor irradiation enhances the anti-tumour effect of a double-suicide gene therapy system in a murine glioma model. J Gene Med 2003; 5: 377–385.

    Article  CAS  PubMed  Google Scholar 

  15. Hatzis P, Al-Madhoon AS, Jullig M, Petrakis TG, Eriksson S, Talianidis I . The intracellular localization of deoxycytidine kinase. J Biol Chem 1998; 273: 30239–30243.

    Article  CAS  PubMed  Google Scholar 

  16. Arner ESJ, Spasokoukotskaja T, Eriksson S . Selective assays for thymidine kinase 1 and 2 and deoxycytidine kinase and their activities in extracts from human cells and tissues. Biochem Biophys Res Commun 1992; 188: 712–718.

    Article  CAS  PubMed  Google Scholar 

  17. Wroblewski F, Ladue JS . Lactic dehydrogenase activity in the blood. Proc Soc Exp Biol Med 1955; 90: 210–213.

    Article  CAS  PubMed  Google Scholar 

  18. Hubeek I, Peters GJ, Broekhuizen AJF, Talianidis I, Schouten van Meeteren AY, van Wering ER et al. Immunocytochemical detection of deoxycytidine kinase in pediatric malignancies in relation to in vitro cytarabine sensitivity. Nucleosides Nucleotides Nucleic Acids 2004; 23: 1351–1356.

    Article  CAS  PubMed  Google Scholar 

  19. Kroep JR, Loves WJP, van der Wilt CL, Alvarez E, Talianidis I, Boven E et al. Pretreatment deoxycytidine kinase levels predict in vivo gemcitabine sensitivity. Mol Cancer Ther 2002; 1: 371–376.

    CAS  PubMed  Google Scholar 

  20. Bergman AM, Pinedo HM, Jongsma AP, Brouwer M, Ruiz van Haperen VW, Veerman G et al. Decreased resistance to gemcitabine (2′,2′-difluoro-deoxycytidine) of cytosine arabinoside-resistant myeloblastic murine and rat leukemia cell lines: role of altered activity and substrate specificity of deoxycytidine kinase. Biochem Pharmacol 1999; 57: 397–406.

    Article  CAS  PubMed  Google Scholar 

  21. van Bree C, Kreder NC, Loves WJP, Franken NA, Peters GJ, Haveman J . Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines. Int J Radiat Oncol Biol Phys 2002; 54: 237–244.

    Article  CAS  PubMed  Google Scholar 

  22. Goan YG, Zhou B, Hu E, Mi S, Yen Y . Overexpression of ribonucleotide reductase as a mechanism of resistance to 2-2-difluorodeoxycytidine in the human KB cancer cell line. Cancer Res 1999; 59: 4204–4207.

    CAS  PubMed  Google Scholar 

  23. Eliopoulos N, Cournoyer D, Momparler RL . Drug resistance to 5-aza-2′-deoxycytidine, 2′,2′-difluorodeoxycytidine, and cytosine arabinoside conferred by retroviral-mediated transfer of human cytidine deaminase cDNA into murine cells. Cancer Chemother Pharmacol 1998; 42: 373–378.

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Munch-Petersen B, Herrstrom SA, Hellman U, Bergman T, Jornvall H et al. Human thymidine kinase 2: molecular cloning and characterisation of the enzyme activity with antiviral and cytostatic nucleoside substrates. FEBS Lett 1999; 443: 170–174.

    Article  CAS  PubMed  Google Scholar 

  25. Sanda A, Zhu C, Johanson M, Karlsson A . Bystander effects of nucleoside analogs phosphorylated in the cytosol or mitochondria. Biochem Biophys Res Commun 2001; 287: 1163–1166.

    Article  CAS  PubMed  Google Scholar 

  26. Ruiz van Haperen VW, Veerman G, Vermorken JB, Peters GJ . 2′,2′-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumour cell lines. Biochem Pharmacol 1993; 46: 762–766.

    Article  CAS  PubMed  Google Scholar 

  27. Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB . Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′-difluorodeoxycytidine. Mol Pharmacol 1990; 38: 567–572.

    CAS  PubMed  Google Scholar 

  28. Huang P, Chubb S, Hertel LW, Grindex GB, Plunkett W . Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 1991; 51: 6110–6117.

    CAS  PubMed  Google Scholar 

  29. Habteyesus A, Nordenskjöld A, Bohman C, Eriksson S . Deoxynucleoside phosphorylating enzymes in monkey and human tissues show great similarities, while mouse deoxycytidine kinase has a different substrate specificity. Biochem Pharmacol 1991; 42: 1829–1836.

    Article  CAS  PubMed  Google Scholar 

  30. Karlsson A, Johansson M, Erikson S . Cloning and expression of mouse deoxycytidine kinase. Pure recombinant mouse and human enzymes show differences in substrate specificity. J Biol Chem 1994; 269: 24374–24378.

    CAS  PubMed  Google Scholar 

  31. Reichelová V, Juliusson G, Spasokoukotskaja T, Eriksson S, Liliemark J . Interspecies differences in the kinetic properties of deoxycytidine kinase elucidate the poor utility of a phase I pharmacologically directed dose-escalation concept for 2-chloro-2′-deoxyadenosine. Cancer Chemother Pharmacol 1995; 36: 524–529.

    Article  PubMed  Google Scholar 

  32. Manome Y, Wen PY, Dong Y, Tanaka T, Mitchell BS, Kufe DW et al. Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Nat Med 1996; 2: 567–573.

    Article  CAS  PubMed  Google Scholar 

  33. Hapke DM, Stegmann APA, Mitchell BS . Retroviral transfer of deoxycytidine kinase into tumor cell lines enhances nucleoside toxicity. Cancer Res 1996; 56: 2343–2347.

    CAS  PubMed  Google Scholar 

  34. Blackstock AW, Lightfoot H, Case LD, Tepper JE, Mukherji SK, Mitchell BS et al. Tumor uptake and eliminatin of 2′,2′-difluoro-2′-deoxycytidine (gemcitabine) after deoxycytidine kinase gene transfer: correlation with in vivo tumor response. Clin Cancer Res 2001; 7: 3263–3268.

    CAS  PubMed  Google Scholar 

  35. Beauséjour CM, Gagnon J, Primeau M, Momparler RL . Cytotoxic activity of 2′,2′-difluorodeoxycytidine, 5-aza-2′-deoxycytidine and cytosine arabinoside in cells transduced with deoxycytidine kinase gene. Biochem Biophys Res Commun 2002; 293: 1478–1484.

    Article  PubMed  Google Scholar 

  36. Kawamura K, Namba H, Bahar R, Miyauchi M, Maeda T, Hamada H et al. Transduction of the human deoxycytidine kinase gene in rodent tumor cells induces in vivo growth retardation in syngeneic hosts. Cancer Lett 2000; 156: 151–157.

    Article  CAS  PubMed  Google Scholar 

  37. Shewach DS, Hahn TM, Chang E, Hertel LW, Lawrence TS . Metabolism of 2′2′-difluoro-2′-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res 1994; 54: 3218–3223.

    CAS  PubMed  Google Scholar 

  38. Lawrence TS, Chang EY, Hahn TM, Hertel LW, Shewach DS . Radiosensitization of pancreatic cancer cell by 2′,2′-difluoro-2′-deoxycytidine. Int J Radiat Oncol Biol Phys 1996; 34: 867–872.

    Article  CAS  PubMed  Google Scholar 

  39. Milas L, Fujii T, Hunter N, Elshaikh M, Mason K, Plunkett W et al. Enhancement of tumor radioresponse in vivo by gemcitabine. Cancer Res 1999; 59: 107–114.

    CAS  PubMed  Google Scholar 

  40. Rosier JF, Bruniaux M, Husson B, Octave-Prignot M, Beauduin M, Grégoire V . Role of 2′-2′ difluorodeoxycytidine (gemcitabine)-induced cell cycle dysregulation in radio-enhancement of human head and neck squamous cell carcinomas. Radiother Oncol 2004; 70: 55–61.

    Article  CAS  PubMed  Google Scholar 

  41. Cividalli A, Livdi E, Ceciarelli F, Fontana G, Altavista P, Cruciani G et al. Combined use of gemcitabine and radiation in mice. Anticancer Res 2001; 21: 307–312.

    CAS  PubMed  Google Scholar 

  42. Grégoire V, Rosier JF, De Bast M, Bruniaux M, De Coster B, Octave-Prignot M et al. Role of deoxycytidine kinase (dCK) activity in gemcitabine's radioenhancement in mice and human cell lines in vitro. Radiother Oncol 2002; 63: 329–338.

    Article  PubMed  Google Scholar 

  43. Pauwels B, Korst AEC, Pattyn GGO, Lambrechts HAJ, Kamphuis JAE, De Pooter CMJ et al. The relation between deoxycytidine kinase activity and the radiosensntizing effect of gemcitabine in eight different human tumor cell lines. BMC Cancer 2006; 6: 142.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Csapo Z, Keszler G, Sáfrány G, Spasokoukotskaja T, Talianidis I, Staub M et al. Activation of deoxycytidine kinase by gamma-irradiation and inactivation by hyperosmotic shock in human lymphocytes. Biochem Pharmacol 2003; 65: 2031–2039.

    Article  CAS  PubMed  Google Scholar 

  45. Vernejoul F, Ghénassia L, Souque A, Lulka H, Drocourt D, Cordelier P et al. Gene therapy based on gemcitabine chemosensitization suppresses pancreatic tumor growth. Mol Ther 2006; 14: 758–767.

    Article  CAS  PubMed  Google Scholar 

  46. Hsu YF, Reitz J . Gemcitabine. A cytidine analog active against solid tumors. Am J Health Syst Pharm 1997; 54: 162–170.

    Article  Google Scholar 

  47. Sabini E, Ort S, Monnerjahn C, Konrad M, Lavie A . Structure of human dCK suggests strategies to improve anticancer and antiviral therapy. Nat Struct Biol 2003; 10: 513–519.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the expert technical assistance of Erzsébet Fekete, Éva Tölcsér and Rita Lökös. This work was supported by the following Hungarian grants: ETT 234/2006 and OTKA F034775 to KL, OTKA F46330 to SD, ETT-413/2006, OTKA T-047034, and GVOP-3.1.1.-2004-05-0389/3.0 to GS and OTKA T-046730 to TS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Lumniczky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szatmári, T., Huszty, G., Désaknai, S. et al. Adenoviral vector transduction of the human deoxycytidine kinase gene enhances the cytotoxic and radiosensitizing effect of gemcitabine on experimental gliomas. Cancer Gene Ther 15, 154–164 (2008). https://doi.org/10.1038/sj.cgt.7701115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701115

Keywords

This article is cited by

Search

Quick links