Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A virus-directed enzyme prodrug therapy (VDEPT) strategy for lung cancer using a CYP2B6/NADPH-cytochrome P450 reductase fusion protein

Abstract

Virus-directed enzyme prodrug therapy (VDEPT) is an emerging strategy against cancer. Our approach is a P450-based VDEPT that consists of using cyclophosphamide (CPA) as a prodrug and a Cytochrome P450 2B6/NADPH cytochrome P450 reductase fusion protein (CYP2B6/RED) as a prodrug-activating enzyme. Due to the heterogenous expression of proteins in tumor cells, basal reductase activity may not be sufficient to supply CYP2B6 with electrons, the fusion protein should enable the expression of both proteins at high levels in tumor cells. CYP/RED fusion proteins have never been previously expressed in mammalian cells, to enable expression the fusion protein was cloned into an adenoviral vector and subsequently several pulmonary tumor cell lines were infected. The CYP2B6/RED fusion protein was detected by Western blot, its mRNA by Northern blot, and its heme incorporation into an active form by spectral analysis. Infection with the fusion gene increased RED activity in microsomes by a factor of 3 compared to the control. After infection and treatment with CPA, in cell lines with low endogenous RED, the fusion protein mediated significantly higher CPA-induced cytotoxicity compared to cells expressing solely CYP2B6. In conclusion, the fusion protein is functional for VDEPT by providing one protein for higher levels of CPA metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Springer CJ, Niculescu-Duvaz I . Approaches to gene-directed enzyme prodrug therapy (GDEPT). Adv Exp Med Biol. 2000;465:403–409.

    Article  CAS  PubMed  Google Scholar 

  2. Kan O, Kingsman S, Naylor S . Cytochrome P450-based cancer gene therapy: current status. Expert Opin Biol Ther. 2002;2:857–868.

    Article  CAS  PubMed  Google Scholar 

  3. Chen L, Waxman DJ . Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res. 1995;55:581–589.

    CAS  PubMed  Google Scholar 

  4. Code EL, Crespi CL, Penman BW, et al. Human cytochrome P4502B6: interindividual hepatic expression, substrate specificity, and role in procarcinogen activation. Drug Metab Dispos. 1997;25:985–993.

    CAS  PubMed  Google Scholar 

  5. Gervot L, Rochat B, Gautier JC, et al. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics. 1999;9:295–306.

    Article  CAS  PubMed  Google Scholar 

  6. Sladek NE . Metabolism of oxazaphosphorines. Pharmacol Ther. 1988;37:301–355.

    Article  CAS  PubMed  Google Scholar 

  7. Fleming RA . An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy. 1997;17:146S–154S.

    CAS  PubMed  Google Scholar 

  8. Boddy AV, Yule SM . Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet. 2000;38:291–304.

    Article  CAS  PubMed  Google Scholar 

  9. Clarke L, Waxman DJ . Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation. Cancer Res. 1989;49:2344–2350.

    CAS  PubMed  Google Scholar 

  10. Chang TK, Yu L, Maurel P, et al. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res. 1997;57:1946–1954.

    CAS  PubMed  Google Scholar 

  11. Hickman JA . Apoptosis induced by anticancer drugs. Cancer Metastasis Rev. 1992;11:121–139.

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz PS, Waxman DJ . Cyclophosphamide induces Caspase 9-dependent apoptosis in 9L tumor cells. Mol Pharmacol. 2001;60:1268–1279.

    Article  CAS  PubMed  Google Scholar 

  13. Ichikawa T, Petros WP, Ludeman SM, et al. Intraneoplastic polymer-based delivery of cyclophosphamide for intratumoral bioconversion by a replicating oncolytic viral vector. Cancer Res. 2001;61:864–868.

    CAS  PubMed  Google Scholar 

  14. Wei MX, Tamiya T, Rhee RJ, et al. Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm. Clin Cancer Res. 1995;1:1171–1177.

    CAS  PubMed  Google Scholar 

  15. Freeman SM, Abboud CN, Whartenby KA, et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993;53:5274–5283.

    CAS  PubMed  Google Scholar 

  16. Lu AY, Junk KW, Coon MJ . Resolution of the cytochrome P-450-containing omega-hydroxylation system of liver microsomes into three components. J Biol Chem. 1969;244:3714–3721.

    CAS  PubMed  Google Scholar 

  17. Estabrook RW, Franklin MR, Cohen B, et al. Biochemical and genetic factors influencing drug metabolism. Influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism. 1971;20:187–199.

    Article  CAS  PubMed  Google Scholar 

  18. Shiraki H, Guengerich FP . Turnover of membrane proteins: kinetics of induction and degradation of seven forms of rat liver microsomal cytochrome P-450, NADPH-cytochrome P-450 reductase, and epoxide hydrolase. Arch Biochem Biophys. 1984;235:86–96.

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Yu LJ, Waxman DJ . Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Cancer Res. 1997;57:4830–4837.

    CAS  PubMed  Google Scholar 

  20. Yu LJ, Matias J, Scudiero DA, et al. P450 enzyme expression patterns in the NCI human tumor cell line panel. Drug Metab Dispos. 2001;29:304–312.

    CAS  PubMed  Google Scholar 

  21. Shet MS, Fisher CW, Holmans PL, et al. Human cytochrome P450 3A4: enzymatic properties of a purified recombinant fusion protein containing NADPH-P450 reductase. Proc Natl Acad Sci USA. 1993;90:11748–11752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murakami H, Yabusaki Y, Sakaki T, et al. A genetically engineered P450 monooxygenase: construction of the functional fused enzyme between rat cytochrome P450c and NADPH-cytochrome P450 reductase. DNA. 1987;6:189–197.

    Article  CAS  PubMed  Google Scholar 

  23. Fisher CW, Shet MS, Estabrook RW . Construction of plasmids and expression in Escherichia coli of enzymatically active fusion proteins containing the heme-domain of a P450 linked to NADPH-P450 reductase. Methods Enzymol. 1996;272:15–25.

    Article  CAS  PubMed  Google Scholar 

  24. Fisher CW, Shet MS, Caudle DL, et al. High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-P450 reductase flavoprotein. Proc Natl Acad Sci USA. 1992;89:10817–10821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chun YJ, Shimada T, Guengerich FP . Construction of a human cytochrome P450 1A1: rat NADPH-cytochrome P450 reductase fusion protein cDNA and expression in Escherichia coli, purification, and catalytic properties of the enzyme in bacterial cells and after purification. Arch Biochem Biophys. 1996;330:48–58.

    Article  CAS  PubMed  Google Scholar 

  26. Jounaidi Y, Hecht JE, Waxman DJ . Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Cancer Res. 1998;58:4391–4401.

    CAS  PubMed  Google Scholar 

  27. Chase M, Chung RY, Chiocca EA . An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nat Biotechnol. 1998;16:444–448.

    Article  CAS  PubMed  Google Scholar 

  28. Lohr M, Hoffmeyer A, Kroger J, et al. Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet. 2001;357:1591–1592.

    Article  CAS  PubMed  Google Scholar 

  29. Lohr M, Muller P, Karle P, et al. Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450. Gene Ther. 1998;5:1070–1078.

    Article  CAS  PubMed  Google Scholar 

  30. Knowles BB, Howe CC, Aden DP . Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980;209:497–499.

    Article  CAS  PubMed  Google Scholar 

  31. He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998;95:2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Belloc C, Baird S, Cosme J, et al. Human cytochromes P450 expressed in Escherichia coli: production of specific antibodies. Toxicology. 1996;106:207–219.

    Article  CAS  PubMed  Google Scholar 

  33. Omura T, Sato R . The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem. 1964;239:2370–2378.

    CAS  PubMed  Google Scholar 

  34. Yasukochi Y, Okita RT, Masters BS . Comparison of the properties of detergent-solubilized NADPH-cytochrome P-450 reductases from pig liver and kidney. Immunochemical, kinetic, and reconstitutive properties. Arch Biochem Biophys. 1980;202:491–498.

    Article  CAS  PubMed  Google Scholar 

  35. Habig WH, Pabst MJ, Fleischner G, et al. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci USA. 1974;71:3879–3882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bostian KA, Betts GF . Kinetics and reaction mechanism of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae. Biochem J. 1978;173:787–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vasiliou V, Pappa A, Petersen DR . Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interactions. 2000;129:1–19.

    Article  CAS  Google Scholar 

  38. Omura T, Sato R . A new cytochrome in liver microsomes. J Biol Chem. 1962;237:1375–1376.

    CAS  PubMed  Google Scholar 

  39. McMillan K, Bredt DS, Hirsch DJ, et al. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci USA. 1992;89:11141–11145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miura Y, Fulco AJ . Omega-2) hydroxylation of fatty acids by a soluble system from bacillus megaterium. J Biol Chem. 1974;249:1880–1888.

    CAS  PubMed  Google Scholar 

  41. Barnes HJ, Arlotto MP, Waterman MR . Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proc Natl Acad Sci USA. 1991;88:5597–5601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Black SD, Coon MJ . Structural features of liver microsomal NADPH-cytochrome P-450 reductase. Hydrophobic domain, hydrophilic domain, and connecting region. J Biol Chem. 1982;257:5929–5938.

    CAS  PubMed  Google Scholar 

  43. Sakaki T, Shibata M, Yabusaki Y, et al. Expression of bovine cytochrome P450c21 and its fused enzymes with yeast NADPH-cytochrome P450 reductase in Saccharomyces cerevisiae. DNA Cell Biol. 1990;9:603–614.

    Article  CAS  PubMed  Google Scholar 

  44. Yuan ZM, Smith PB, Brundrett RB, et al. Glutathione conjugation with phosphoramide mustard and cyclophosphamide. A mechanistic study using tandem mass spectrometry. Drug Metab Dispos. 1991;19:625–629.

    CAS  PubMed  Google Scholar 

  45. Giorgianni F, Bridson PK, Sorrentino BP, et al. Inactivation of aldophosphamide by human aldehyde dehydrogenase isozyme 3. Biochem Pharmacol. 2000;60:325–338.

    Article  CAS  PubMed  Google Scholar 

  46. Jounaidi Y, Waxman DJ . Use of replication-conditional adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes for cancer therapy. Cancer Res. 2004;64:292–303.

    Article  CAS  PubMed  Google Scholar 

  47. Daniel JC, Smythe WR . Gene therapy of lung cancer. Semin Surg Oncol. 2003;21:196–204.

    Article  PubMed  Google Scholar 

  48. Sterman DH, Treat J, Litzky LA, et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther. 1998;9:1083–1092.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Marie-Agnes Sari for her advice and help, Dr P Urban for kindly providing the pUC18/RED plasmid. Dr EMGillam for her support and feedback on the manuscript. This work was supported by the INSERM, the Université Paris V René Descartes, the Region Ile de France (SESAME), the Ligue contre le Cancer, the Association de Research contre le Cancer (ARC), the Fondation pour la Research Médicale (FRM) and Oncodesign S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle de Waziers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tychopoulos, M., Corcos, L., Genne, P. et al. A virus-directed enzyme prodrug therapy (VDEPT) strategy for lung cancer using a CYP2B6/NADPH-cytochrome P450 reductase fusion protein. Cancer Gene Ther 12, 497–508 (2005). https://doi.org/10.1038/sj.cgt.7700817

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700817

Keywords

This article is cited by

Search

Quick links