Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Photochemically enhanced gene transfection increases the cytotoxicity of the herpes simplex virus thymidine kinase gene combined with ganciclovir

Abstract

Tumor targeting is an important issue in cancer gene therapy. We have developed a gene transfection method, based on light-inducible photochemical internalization (PCI) of a transgene, to improve gene delivery and expression selectively in illuminated areas, for example, in tumors. In the present work, we demonstrate that PCI improved the nonviral vector polyethylenimine (PEI)-mediated transfection of a therapeutic gene, the ‘suicide’ gene encoding herpes simplex virus thymidine kinase (HSVtk). In U87MG glioblastoma cells in vitro, the photochemical treatment stimulated expression of the HSVtk transgene, and, consequently, enhanced cell killing by the subsequent treatment with the prodrug ganciclovir (GCV). When relatively low doses of DNA (1 μg/ml) and the PEI vector (N/P 4) were used, HSVtk gene transfection followed by the GCV treatment did not have an effect on cell survival unless the photochemical treatment was performed, which potentiated the cytotoxicity to 90%. These findings indicate that photochemical transfection allows: (i) selective enhancement in gene expression and gene-mediated biological effects (cell killing by the Hsvtk/GCV approach) in response to illumination; (ii) the use of low, suboptimal for the nonviral transfection methods without PCI, doses of both DNA and the vector, which may be relevant and advantageous for therapeutic gene transfer in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 4
Figure 1
Figure 2
Figure 3
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Curiel DT . Strategies to adapt adenoviral vectors for targeted delivery. Ann NY Acad Sci. 1999;886:158–171.

    Article  CAS  PubMed  Google Scholar 

  2. Cristiano RJ . Targeted, non-viral gene delivery for cancer gene therapy. Front Biosci. 1998;3:D1161–D1170.

    Article  CAS  PubMed  Google Scholar 

  3. Nettelbeck DM, Jerome V, Muller R . Gene therapy: designer promoters for tumor targeting. Trends Genet. 2000;16:174–181.

    Article  CAS  PubMed  Google Scholar 

  4. Berg K, Selbo PK, Prasmickaite L, et al. Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res. 1999;59:1180–1183.

    CAS  PubMed  Google Scholar 

  5. Høgset A, Prasmickaite L, Engesæter BØ, et al. Light directed gene transfer by photochemical internalisation. Curr Gene Ther. 2003;3:89–112.

    Article  PubMed  Google Scholar 

  6. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.

    Article  CAS  PubMed  Google Scholar 

  7. Prasmickaite L, Høgset A, Selbo PK, et al. Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy. Br J Cancer. 2002;86:652–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zabner J, Fasbender AJ, Moninger T, et al. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995;270:18997–19007.

    Article  CAS  PubMed  Google Scholar 

  9. Selbo PK, Sivam G, Fodstad Ø, et al. In vivo documentation of photochemical internalization, a novel approach to site specific cancer therapy. Int J Cancer. 2001;92:761–766.

    Article  CAS  PubMed  Google Scholar 

  10. Høgset A, Prasmickaite L, Tjelle TE, et al. Photochemical transfection: a new technology for light-induced, site-directed gene delivery. Hum Gene Ther. 2000;11:869–880.

    Article  PubMed  Google Scholar 

  11. Høgset A, Engesæter B, Prasmickaite L, et al. Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. Cancer Gene Ther. 2002;9:365–371.

    Article  PubMed  Google Scholar 

  12. Moolten FL, Wells JM . Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst. 1990;82:297–300.

    Article  CAS  PubMed  Google Scholar 

  13. Freeman SM, Abboud CN, Whartenby KA, et al. The "bystander effect": tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993;53:5274–5283.

    CAS  PubMed  Google Scholar 

  14. Shand N, Weber F, Mariani L, et al. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. Hum Gene Ther. 1999;10:2325–2335.

    Article  CAS  PubMed  Google Scholar 

  15. Klatzmann D, Valery CA, Bensimon G, et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase "suicide" gene therapy for recurrent glioblastoma. Hum Gene Ther. 1998;9:2595–2604.

    CAS  PubMed  Google Scholar 

  16. Rainov NG . A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11:2389–2401.

    Article  CAS  PubMed  Google Scholar 

  17. Culver KW, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 1992;256:1550–1552.

    Article  CAS  PubMed  Google Scholar 

  18. Smitt PS, Driesse M, Wolbers J, et al. Treatment of relapsed malignant glioma with an adenoviral vector containing the herpes simplex thymidine kinase gene followed by ganciclovir. Mol Ther. 2003;7:851–858.

    Article  CAS  PubMed  Google Scholar 

  19. Karara AL, Bumaschny VF, Fiszman GL, et al. Lipofection of early passages of cell cultures derived from murine adenocarcinomas: in vitro and ex vivo testing of the thymidine kinase/ganciclovir system. Cancer Gene Ther. 2002;9:96–99.

    Article  CAS  PubMed  Google Scholar 

  20. Iwai M, Harada Y, Tanaka S, et al. Polyethylenimine-mediated suicide gene transfer induces a therapeutic effect for hepatocellular carcinoma in vivo by using an Epstein–Barr virus-based plasmid vector. Biochem Biophys Res Commun. 2002;291:48–54.

    Article  CAS  PubMed  Google Scholar 

  21. Voges J, Weber F, Reszka R, et al. Clinical protocol. Liposomal gene therapy with the herpes simplex thymidine kinase gene/ganciclovir system for the treatment of glioblastoma multiforme. Hum Gene Ther. 2002;13:675–685.

    Article  CAS  PubMed  Google Scholar 

  22. Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kircheis R, Ostermann E, Wolschek MF, et al. Tumor-targeted gene delivery of tumor necrosis factor-alpha induces tumor necrosis and tumor regression without systemic toxicity. Cancer Gene Ther. 2002;9:673–680.

    Article  CAS  PubMed  Google Scholar 

  24. Kircheis R, Wightman L, Schreiber A, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Therapy. 2001;8:28–40.

    Article  CAS  PubMed  Google Scholar 

  25. Prasmickaite L, Høgset A, Berg K . The role of the cell cycle on the efficiency of photochemical gene transfection. Biochim Biophys Acta. 2002;1570:210–218.

    Article  CAS  PubMed  Google Scholar 

  26. Llorente A, Rapak A, Schmid SL, et al. Expression of mutant dynamin inhibits toxicity and transport of endocytosed ricin to the Golgi apparatus. J Cell Biol. 1998;140:553–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cruciani V, Mikalsen SO . Mechanisms involved in responses to the peroxisome proliferator WY-14,643 on gap junctional intercellular communication in V79 hamster fibroblasts. Toxicol Appl Pharmacol. 2002;182:66–75.

    Article  CAS  PubMed  Google Scholar 

  28. Steel GG, Peckham MJ . Exploitable mechanisms in combined radiotherapy–chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys. 1979;5:85–91.

    Article  CAS  PubMed  Google Scholar 

  29. Prasmickaite L, Høgset A, Tjelle TE, et al. Role of endosomes in gene transfection mediated by photochemical internalisation (PCI). J Gene Med. 2000;2:477–488.

    Article  CAS  PubMed  Google Scholar 

  30. Hellum M, Høgset A, Engesæter BØ, et al. Photochemically enhanced gene delivery with cationic lipid formulations. Photochem Photobiol Sci. 2003;2:407–411.

    Article  CAS  PubMed  Google Scholar 

  31. Kircheis R, Wightman L, Wagner E . Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev. 2001;53:341–358.

    Article  CAS  PubMed  Google Scholar 

  32. Ogris M, Brunner S, Schuller S, et al. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Therapy. 1999;6:595–605.

    Article  CAS  PubMed  Google Scholar 

  33. Chollet P, Favrot MC, Hurbin A, et al. Side-effects of a systemic injection of linear polyethylenimine–DNA complexes. J Gene Med. 2002;4:84–91.

    Article  PubMed  Google Scholar 

  34. Burrows FJ, Gore M, Smiley WR, et al. Purified herpes simplex virus thymidine kinase retroviral particles: III. Characterization of bystander killing mechanisms in transfected tumor cells. Cancer Gene Ther. 2002;9:87–95.

    Article  CAS  PubMed  Google Scholar 

  35. Touraine RL, Ishii-Morita H, Ramsey WJ, et al. The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Therapy. 1998;5:1705–1711.

    Article  CAS  PubMed  Google Scholar 

  36. Namba H, Iwadate Y, Kawamura K, et al. Efficacy of the bystander effect in the herpes simplex virus thymidine kinase-mediated gene therapy is influenced by the expression of connexin43 in the target cells. Cancer Gene Ther. 2001;8:414–420.

    Article  CAS  PubMed  Google Scholar 

  37. Carrio M, Mazo A, Lopez-Iglesias C, et al. Retrovirus-mediated transfer of the herpes simplex virus thymidine kinase and connexin26 genes in pancreatic cells results in variable efficiency on the bystander killing: implications for gene therapy. Int J Cancer. 2001;94:81–88.

    Article  CAS  PubMed  Google Scholar 

  38. Tasciotti E, Zoppe M, Giacca M . Transcellular transfer of active HSV-1 thymidine kinase mediated by an 11-amino-acid peptide from HIV-1 Tat. Cancer Gene Ther. 2003;10:64–74.

    Article  CAS  PubMed  Google Scholar 

  39. Liu CS, Kong B, Xia HH, et al. VP22 enhanced intercellular trafficking of HSV thymidine kinase reduced the level of ganciclovir needed to cause suicide cell death. J Gene Med. 2001;3:145–152.

    Article  CAS  PubMed  Google Scholar 

  40. Kircheis R, Wightman L, Kursa M, et al. Surface-shielded polycation-based systems targeting reporter and therapeutic genes to distant tumors. Gene Ther Molec Biol. 2001;6:159–167.

    Google Scholar 

  41. Kloeckner J, Prasmickaite L, Høgset A, et al. Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J Drug Targeting. 2004; (In press).

  42. Luna MC, Ferrario A, Wong S, et al. Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Res. 2000;60:1637–1644.

    CAS  PubMed  Google Scholar 

  43. Luna MC, Chen X, Wong S, et al. Enhanced photodynamic therapy efficacy with inducible suicide gene therapy controlled by the grp promoter. Cancer Res. 2002;62:1458–1461.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr V Cruciani for assessing gap junctional communication. This work was supported by the Norwegian Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Prasmickaite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasmickaite, L., Høgset, A., Olsen, V. et al. Photochemically enhanced gene transfection increases the cytotoxicity of the herpes simplex virus thymidine kinase gene combined with ganciclovir. Cancer Gene Ther 11, 514–523 (2004). https://doi.org/10.1038/sj.cgt.7700720

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700720

Keywords

This article is cited by

Search

Quick links