Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced antitumor effect and reduced vector dissemination with fiber-modified adenovirus vectors expressing herpes simplex virus thymidine kinase

Abstract

There are at least two hurdles confronting the use of the adenovirus (Ad)-mediated herpes simplex virus thymidine kinase (HSVtk)/ganciclovir (GCV) system for the treatment of cancer. One is inefficient Ad vector–mediated gene transfer into tumor cells lacking the primary receptor, i.e., the coxsackievirus and adenovirus receptor (CAR). The other is hepatotoxicity due to unwanted vector spread into the liver, even when Ad vectors are injected intratumorally. Herein, we present an attractive strategy for overcoming such limitations based on use of a fiber-modified Ad vector containing an RGD peptide motif in the fiber knob. HSVtk-expressing Ad vectors containing mutant fiber (AdRGD-tk) or wild-type fiber (Ad-tk) were injected intratumorally into CAR-negative B16 melanoma cells inoculated into mice, after which GCV was injected intraperitoneally for 10 days. AdRGD-tk showed approximately 25 times more antitumor activity than Ad-tk. Histopathological studies suggested that liver damage in mice injected with AdRGD-tk was significantly lower than that in mice injected with Ad-tk. Intratumoral administration of luciferase-expressing Ad vectors containing the mutant fiber (AdRGD-L2) resulted in nearly 40 times more luciferase production in the tumor, but 8 times less production in the liver than the conventional Ad vectors (Ad-L2). These results indicate that combination of fiber-modified vectors and a HSVtk/GCV system is a potentially useful and safe approach for the treatment of tumors lacking CAR expression, and that fiber-modified vectors could be of great utility for gene therapy and gene transfer experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chen SH, Shine HD, Goodman JC, Grossman RG, Woo SL . Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo Proc Natl Acad Sci USA 1994 91: 3054–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Culver KW, Ram Z, Wallbridge S et al. In vivo gene transfer with retroviral vector–producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  3. Kucharczuk JC, Raper S, Elshami AA et al. Safety of intrapleurally administered recombinant adenovirus carrying herpes simplex thymidine kinase DNA followed by ganciclovir therapy in nonhuman primates Hum Gene Ther 1996 7: 2225–2233

    Article  CAS  PubMed  Google Scholar 

  4. Oldfield EH, Ram Z, Culver KW et al. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir Hum Gene Ther 1993 4: 39–69

    Article  CAS  PubMed  Google Scholar 

  5. Ram Z, Culver KW, Oshiro EM et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nat Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  6. Vincent AJ, Vogels R, Someren GV et al. Herpes simplex virus thymidine kinase gene therapy for rat malignant brain tumors Hum Gene Ther 1996 7: 197–205

    Article  CAS  PubMed  Google Scholar 

  7. Izquierdo M, Martin V, de Felipe P et al. Human malignant brain tumor response to herpes simplex thymidine kinase (HSVtk)/ganciclovir gene therapy Gene Ther 1996 3: 491–495

    CAS  PubMed  Google Scholar 

  8. Klatzmann D, Valery CA, Bensimon G et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study group on gene therapy for glioblastoma Hum Gene Ther 1998 9: 2595–2604

    CAS  PubMed  Google Scholar 

  9. Shand N, Weber F, Mariani L et al. A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European–Canadian study group Hum Gene Ther 1999 10: 2325–2335

    Article  CAS  PubMed  Google Scholar 

  10. Sterman DH, Treat J, Litzky LA et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma Hum Gene Ther 1998 9: 1083–1092

    Article  CAS  PubMed  Google Scholar 

  11. Vincent AJ, Esandi MC, Avezaat CJ et al. Preclinical testing of recombinant adenoviral herpes simplex virus-thymidine kinase gene therapy for central nervous system malignancies Neurosurgery 1997 41: 442–451

    Article  CAS  PubMed  Google Scholar 

  12. Freeman SM, Abboud CN, Whartenby KA et al. The “bystander effect:” tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  13. Mesnil M, Piccoli C, Tiraby G, Willecke K, Yamasaki H . Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins Proc Natl Acad Sci USA 1996 93: 1831–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mesnil M, Yamasaki H . Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication Cancer Res 2000 60: 3989–3999

    CAS  PubMed  Google Scholar 

  15. Kovesdi I, Brough D, Bruder J, Wickham T . Adenoviral vectors for gene transfer Curr Opin Biotechnol 1997 8: 583–589

    Article  CAS  PubMed  Google Scholar 

  16. Yeh P, Perricaudet M . Advances in adenoviral vectors: from genetic engineering to their biology FASEB J 1997 11: 615–623

    Article  CAS  PubMed  Google Scholar 

  17. Bergelson JM, Cunningham JA, Droguett G et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  18. Bergelson JM . Receptors mediating adenovirus attachment and internalization Biochem Pharmacol 1999 57: 975–979

    Article  CAS  PubMed  Google Scholar 

  19. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses Proc Natl Acad Sci USA 1997 94: 3352–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dmitriev I, Krasnykh V, Miller CR et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus J Virol 1998 72: 9706–9713

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Krasnykh V, Dmitriev I, Mikheeva G et al. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob J Virol 1998 72: 1844–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mizuguchi H, Koizumi N, Hosono T et al. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob Gene Ther 2001 8: 730–735

    Article  CAS  PubMed  Google Scholar 

  23. Wickham TJ, Tzeng E, Shears LL II et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins J Virol 1997 71: 8221–8229

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Koizumi N, Mizuguchi H, Hosono T et al. Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide Biochim Biophys Acta 2001 1568: 13–20 In press

    Article  CAS  PubMed  Google Scholar 

  25. Bilbao R, Gerolami R, Bralet MP et al. Transduction efficacy, antitumoral effect, and toxicity of adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir therapy of hepatocellular carcinoma: the woodchuck animal model Cancer Gene Ther 2000 7: 657–662

    Article  CAS  PubMed  Google Scholar 

  26. Brand K, Arnold W, Bartels T et al. Liver-associated toxicity of the HSV-tk/GCV approach and adenoviral vectors Cancer Gene Ther 1997 4: 9–16

    CAS  PubMed  Google Scholar 

  27. Brand K, Loser P, Arnold W, Bartels T, Strauss M . Tumor cell–specific transgene expression prevents liver toxicity of the adeno-HSVtk/GCV approach Gene Ther 1998 5: 1363–1371

    Article  CAS  PubMed  Google Scholar 

  28. Gerolami R, Cardoso J, Lewin M et al. Evaluation of HSV-tk gene therapy in a rat model of chemically induced hepatocellular carcinoma by intratumoral and intrahepatic artery routes Cancer Res 2000 60: 993–1001

    CAS  PubMed  Google Scholar 

  29. Tjuvajev JG, Chen SH, Joshi A et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo Cancer Res 1999 59: 5186–5193

    CAS  PubMed  Google Scholar 

  30. van der Eb MM, Cramer SJ, Vergouwe Y et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration Gene Ther 1998 5: 451–458

    Article  Google Scholar 

  31. Mizuguchi H, Kay MA . Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method Hum Gene Ther 1998 9: 2577–2583

    Article  CAS  PubMed  Google Scholar 

  32. Mizuguchi H, Kay MA . A simple method for constructing E1 and E1/E4 deleted recombinant adenovirus vector Hum Gene Ther 1999 10: 2013–2017

    Article  CAS  PubMed  Google Scholar 

  33. Lieber A, He C-Y, Kirillova I, Kay MA . Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo J Virol 1996 70: 8944–8960

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Maizel JVJ, White DO, Scharff MD . The polypeptides of adenovirus: I. Evidence for multiple protein components in the virion and a comparison of types 27A, and 12 Virology 1968 36: 115–125

    Article  CAS  PubMed  Google Scholar 

  35. Kanegae Y, Makimura M, Saito I . A simple and efficient method for purification of infectious recombinant adenovirus Jpn J Med Sci Biol 1994 47: 157–166

    Article  CAS  PubMed  Google Scholar 

  36. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid–protamine–DNA (LPD) complexes Gene Ther 1997 4: 891–900

    Article  CAS  PubMed  Google Scholar 

  37. Pearson A, Koch P, Atkinson N et al. Factors limiting adenovirus-mediated gene transfer into human lung and pancreatic cancer cell lines Clin Cancer Res 1999 5: 4208–4213

    CAS  PubMed  Google Scholar 

  38. Staba MJ, Wickham TJ, Kovesdi I, Hallahan DE . Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models Cancer Gene Ther 2000 7: 13–19

    Article  CAS  PubMed  Google Scholar 

  39. Asaoka K, Tada M, Sawamura Y, Ikeda J, Abe H . Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus receptor J Neurosurg 2000 92: 1002–1008

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida Y, Sadata A, Zhang W et al. Generation of fiber-mutant recombinant adenoviruses for gene therapy of malignant glioma Hum Gene Ther 1998 9: 2503–2515

    Article  CAS  PubMed  Google Scholar 

  41. Wood M, Perrotte P, Onishi E et al. Biodistribution of an adenoviral vector carrying the luciferase reporter gene following intravesical or intravenous administration to a mouse Cancer Gene Ther 1999 6: 367–372

    Article  CAS  PubMed  Google Scholar 

  42. Huard J, Lochmuller H, Acsadi G et al. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants Gene Ther 1995 2: 107–115

    CAS  PubMed  Google Scholar 

  43. Reynolds PN, Dmitriev I, Curiel DT . Insertion of an RDG motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector Gene Ther 1999 6: 1336–1339

    Article  CAS  PubMed  Google Scholar 

  44. Shinoura N, Sakurai S, Asai A, Kirino T, Hamada H . Transduction of a fiber-mutant adenovirus for the HSVtk gene highly augments the cytopathic effect towards glioma Jpn J Cancer Res 2000 91: 1028–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang R SF, DeGroot LJ . Adenoviral-mediated gene therapy for thyroid carcinoma using thymidine kinase controlled by thyroglobulin promoter demonstrates high specificity and low toxicity Thyroid 2001 11: 115–123

    Article  CAS  PubMed  Google Scholar 

  46. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses Proc Natl Acad Sci USA 1997 94: 3352–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fechner H, Wang X, Wang H et al. Trans-complementation of vector replication versus Coxsackie–adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer Gene Ther 2000 7: 1954–1968

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jun Murai and Nobuko Heishi for their technical assistance. We also thank Dr Akiyoshi Nishikawa (National Institute of Health Sciences, Tokyo, Japan) for his helpful discussion about histological study. This work was supported by grants from the Ministry of Health, Labour, and Welfare of Japan and a Grant-in-Aid for Scientific Research on Priority Areas (C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Mizuguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuguchi, H., Hayakawa, T. Enhanced antitumor effect and reduced vector dissemination with fiber-modified adenovirus vectors expressing herpes simplex virus thymidine kinase. Cancer Gene Ther 9, 236–242 (2002). https://doi.org/10.1038/sj.cgt.7700440

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700440

Keywords

This article is cited by

Search

Quick links