Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tricistronic viral vectors co-expressing interleukin-12 (1L-12) and CD80 (B7-1) for the immunotherapy of cancer: Preclinical studies in myeloma

Abstract

Synergy between interleukin-12 (IL-12) and B7-1 (CD80) for cancer immunotherapy has previously been demonstrated in animal models of breast cancer, lymphoma, and multiple myeloma. With a view to human clinical application, tricistronic retroviral and adenovirus vectors co-expressing IL-12 (IL-12p40 plus IL-12p35) and CD80 were constructed by utilizing two internal ribosome entry site (IRES) sequences to link the three cDNAs. A murine stem cell virus (MSCV)-based retroviral vector (MSCV-hIL12.B7) utilized distinct IRES sequences from the encephalomyocarditis virus (EMCV) and the foot-and-mouth disease virus (FMCV), whereas Ad5-based adenovirus vectors contained transcriptional units with two EMCV IRES sequences under the control of murine (AdMh12.B7) or human (AdHh12.B7) cytomegalovirus promoters. AdMh12.B7 was found to consistently direct higher levels of IL-12 and CD80 expression than AdHh12.B7 following infection of a number of human tumor cell lines. In preclinical studies, the human myeloma cell line U266 was infected with MSCV-hIL12.B7 and a resulting clonal cell line, U/MSCV-h12.B7, was generated with stable expression of CD80 and secreting IL-12 at 1 ng/24 h/106 cells. By comparison, following AdMh12.B7 infection, 81% of infected U266 cells (U/AdMh12.B7) expressed CD80 and secreted IL-12 at 25–50 ng/24 h/106 cells. Both engineered myeloma cell lines stimulated enhanced allogeneic mixed lymphocyte proliferation and provoked increases in cytotoxic T-lymphocyte responses and γ-interferon release from normal donor lymphocytes exposed to parental U266 cells. These results suggest potential clinical utility of AdMh12.B7 in immunotherapy strategies for the treatment of multiple myeloma and other cancers. Cancer Gene Therapy (2001) 8, 361–370

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dranoff G . Cancer gene therapy: connecting basic research with clinical inquiry J Clin Oncol 1998 16: 2548–2556

    Article  CAS  PubMed  Google Scholar 

  2. Pardoll DM . Cancer vaccines Nat Med 1998 18: 1555–1564

    Google Scholar 

  3. Greten TF, Jaffee EM . Cancer vaccines J Clin Oncol 1999 17: 1047–1060

    Article  CAS  PubMed  Google Scholar 

  4. Dranoff G, Jaffee E, Lazenby A, et al . Vaccination with irradiated tumor cells engineered to secrete murine granulocyte macrophage colony-stimulating factor stimulates potent, specific and long-lasting antitumor immunity Proc Natl Acad Sci 1993 15: 3539–3543

    Article  Google Scholar 

  5. Stewart AK, Lassam NJ, Quirt IC, et al . Adenovector mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a Phase 1 trial Gene Ther 1999 6: 350–363

    Article  CAS  PubMed  Google Scholar 

  6. Soiffer R, Lynch T, Mihm M, et al . Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma Proc Natl Acad Sci USA 1998 95: 13141–13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bowman L, Grossman M, Rill D, et al . IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma Blood 1998 15: 1941–1949

    Google Scholar 

  8. Germain RN . MHC-dependent antigen processing and peptide presentation: providing ligands for T-lymphocyte activation Cell 1994 76: 287–299

    Article  CAS  PubMed  Google Scholar 

  9. Azuma M, Ito D, Yagita H, et al . B70 antigen is a second ligand for CTLA-4 and CD28 Nature 1993 366: 76–79

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz RH . Co-stimulation of T lymphocytes: the role of CD28, CTLA-4 and B7/BB1 in interleukin-2 production and immunotherapy Cell 1992 71: 1065–1068

    Article  CAS  PubMed  Google Scholar 

  11. Linsey PS, Ledbetter JA . The role of CD28 receptor during T-cell responses to antigen Annu Rev Immunol 1993 11: 191–212

    Article  Google Scholar 

  12. Gimmi CD, Freeman GJ, Gribben JG, et al . Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 co-stimulation Proc Natl Acad Sci USA 1993 90: 6586–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu TC, Huang AYC, Jaffee EM, et al . A reassessment of the role of B7-1 expression in tumor rejection J Exp Med 1995 182: 1415–1421

    Article  CAS  PubMed  Google Scholar 

  14. Trinchieri G, Scott P . Interleukin 12: basic principles and clinical applications Curr Top Microbiol Immunol 1999 238: 57–78

    CAS  PubMed  Google Scholar 

  15. Wolf SF, Temple PA, Kobayashi M, et al . Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells J Immunol 1991 146: 3074–3081

    CAS  PubMed  Google Scholar 

  16. Zitvogel L, Tahara H, Cai Q, et al . Construction and characterization of retroviral vectors expressing biologically active human interleukin-12 Hum Gene Ther 1994 5: 1493–1506

    Article  CAS  PubMed  Google Scholar 

  17. Fujiwara H, Hamaoka T . The antitumor effects of IL-12 involve enhanced IFN-gamma production by antitumor T cells, their accumulation to tumor sites andin situ IFN-gamma production Leukemia 1997 11: (Suppl 3) 570–571

    PubMed  Google Scholar 

  18. Zitvogel L, Robbins PD, Storkus W, et al . Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors Eur J Immunol 1996 26: 1335–1341

    Article  CAS  PubMed  Google Scholar 

  19. Pizzoferrato E, Chu NR, Hawley TS, et al . Enhanced immunogenicity of B-cell lymphoma genetically engineered to express both B7-1 and interleukin-12 Hum Gene Ther 1997 8: 2217–2228

    Article  CAS  PubMed  Google Scholar 

  20. Hawley TS, Linsley PS, Hawley RG . Co-expression of B7-1 with interleukin-12 enhances vaccine-induced antitumor immunity in experimental myeloma Hematology 1998 3: 365–374

    Article  CAS  PubMed  Google Scholar 

  21. Pützer BM, Hitt M, Miller WJ, et al . Interleukin-12 and B7-1 co-stimulatory molecule expressed by an adenovirus vector act synergistically to facilitate tumor regression Proc Natl Acad Sci USA 1997 94: 10889–10894

    Article  PubMed  PubMed Central  Google Scholar 

  22. Attal M, Harrousseau JL, Stoppa AM, et al . A prospective randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma N Engl J Med 1996 335: 91–97

    Article  CAS  PubMed  Google Scholar 

  23. Lokhorst HM, Schattenberg A, Cornelissen JJ, et al . Donor leukocyte infusions are effective in relapsed myeloma after allogeneic bone marrow transplantation Blood 1997 90: 4206–4211

    CAS  PubMed  Google Scholar 

  24. Kwak LW, Taub DD, Duffey PL, et al . Transfer of myeloma idiotype-specific immunity from an actively immunized marrow donor Lancet 1995 345: 1016–1020

    Article  CAS  PubMed  Google Scholar 

  25. Treon SP, Mollick JA, Urashima M, et al . Muc-1 core protein is expressed on multiple myeloma cells and is induced by dexamethasone Blood 1999 93: 1287–1298

    CAS  PubMed  Google Scholar 

  26. Teoh G, Tai YT, Greenfield EA, et al . Tumor rejection antigen 1 (GRP94) expression is induced by CD40 ligand activation of multiple myeloma cells and mediates allogeneic T-cell reactivity Blood 1998 92: (Suppl 1) 100a

    Google Scholar 

  27. Martı´nez-Salas E, Saiz JC, Davila M, et al . A single nucleotide substitution in the internal ribosome entry site of foot-and-mouth disease virus leads to enhanced cap-independent translationin vivo J Virol 1993 67: 3748–3755

    Google Scholar 

  28. Lieu FHL, Hawley TS, Fong AZC, et al . Transmissibility of murine stem cell virus-based retroviral vectors carrying both interleukin-12 cDNAs and a third gene: implications for immune gene therapy Cancer Gene Ther 1997 4: 167–175

    CAS  PubMed  Google Scholar 

  29. Hawley RG, Lieu FHL, Fong AZC, et al . Retroviral vectors for production of interleukin-12 in the bone marrow to induce a graft-versus-leukemia effect Ann NY Acad Sci 1996 795: 341–345

    Article  CAS  PubMed  Google Scholar 

  30. Hawley RG, Lieu FHL, Fong AZC, et al . Versatile retroviral vectors for potential use in gene therapy Gene Ther 1994 1: 136–138

    CAS  PubMed  Google Scholar 

  31. Miller AD, Garcia JV, von Suhr N, et al . Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus J Virol 1991 65: 2220–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hitt MM, Addison CL, Graham FL . Human adenovirus vectors for gene transfer into mammalian cells Adv Pharmacol San Diego, CA: Academic Press 1997 137–206

    Google Scholar 

  33. Dessureault S, Graham F, Gallinger S . B7-1 gene transfer into human cancer cells by infection with an adenovirus-B7 (Ad-B7) expression vector Ann Surg Oncol 1996 3: 317–324

    Article  CAS  PubMed  Google Scholar 

  34. Bett AJ, Haddara W, Prevec L, et al . An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3 Proc Natl Acad Sci USA 1994 91: 8802–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hitt M, Bett AJ, Prevec L, et al . In: Celis JE, ed.Cell Biology: A Laboratory Handbook San Diego: Academic 1994 479–490

  36. Bramson J, Hitt M, Gallichan WS, et al . Construction of a double recombinant adenovirus vector expressing a heterodimeric cytokine:in vitro andin vivo production of biologically active interleukin 12 Hum Gen Ther 1996 10: 333–342

    Article  Google Scholar 

  37. Foreman KE, Wrone-Smith T, Krueger AE, et al . Expression of co-stimulatory molecules CD80 and/or CD86 by a Kaposi's sarcoma tumor cell line induces differential T-cell activation and proliferation Clin Immunol 1999 91: 345–353

    Article  CAS  PubMed  Google Scholar 

  38. Guinan EC, Gribben JG, Boussiotis VA . Pivotal role of the B7:CD28 pathway in transplantation, tolerance and tumor immunity Blood 1994 84: 3261–3282

    CAS  PubMed  Google Scholar 

  39. Wu TC, Huang AYC, Jaffee EM, et al . A reassessment of the role of B7-1 expression in tumor rejection J Exp Med 1995 182: 1415–1421

    Article  CAS  PubMed  Google Scholar 

  40. Chen L, McGowan P, Ashe S, et al . Tumor immunogenicity determines the effect of B7 co-stimulation on T-cell–mediated tumor immunity J Exp Med 1994 179: 523–532

    Article  CAS  PubMed  Google Scholar 

  41. Desai BB, Quinn PM, Wolitzky AG, et al . IL-12 receptor: II. Distribution and regulation of receptor expression J Immunol 1992 148: 3125–3132

    CAS  PubMed  Google Scholar 

  42. Brunda MJ . Role of IL-12 as an antitumor agent: current status and future directions Res Immunol 1995 1466: 423–431

    Google Scholar 

  43. Sgadari C, Angiolillo AL, Tosata G . Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein-10 Blood 1996 87: 3877–3883

    CAS  PubMed  Google Scholar 

  44. Carrol MW, Overwijk WW, Surman DR, et al . Construction and characterization of a triple recombinant vaccinia virus encoding B7-1, interleukin 12, and a model tumor antigen J Natl Cancer Inst 1998 90: 1881–1887

    Article  Google Scholar 

  45. Addsion CL, Hitt M, Kunksen D, et al . Comparison of the humanversus murine cytomegalovirus immediate early gene promoters for transgene expression by adenoviral vectors J Gen Virol 1997 78: 1653–1661

    Article  Google Scholar 

  46. Colombo MP, Vagliani M, Spreafico F, et al . Amount of interleukin 12 available at the tumor site is critical for tumor regression Cancer Res 1996 56: 2531–2534

    CAS  PubMed  Google Scholar 

  47. Shtil AA, Turner JG, Durfee J, et al . Cytokine-based tumor cell vaccine is equally effective against parental and isogenic multi-drug resistant myeloma cells: the role of cytotoxic T lymphocytes Blood 1999 93: 1831–1837

    CAS  PubMed  Google Scholar 

  48. Kopantzev E, Rochke V, Rudikoff S . Interleukin 2–mediated modulation of plasma cell tumor growth in a model of multiple myeloma Hum Gene Ther 1998 9: 13–19

    Article  CAS  PubMed  Google Scholar 

  49. Yi Q, Dabadghao S, Osterborg A, et al . Myeloma bone marrow plasma cells: evidence for their capacity as antigen-presenting cells Blood 1997 90: 1960–1967

    CAS  PubMed  Google Scholar 

  50. Wendtenr C-M, Nolte A, Mangold E, et al . Gene transfer of co-stimulatory molecules B7-1 and B7-2 into human multiple myeloma cells by recombinant adeno-associated virus enhances the cytolytic T-cell response Gene Ther 1997 4: 726–735

    Article  Google Scholar 

  51. Reichardt VL, Okada CY, Liso A, et al . Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma — a feasibility study Blood 1999 93: 2411–2419

    CAS  PubMed  Google Scholar 

  52. Osterborg A, Yi Q, Henriksson L, et al . Idiotypic immunization combined with granulocyte macrophage colony-stimulating factor in myeloma patients–induced type I, major histocompatibility complex restricted CD8- and CD4-specific T-cell responses Blood 1998 91: 2459–2466

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for these studies was obtained from the Medical Research Council of Canada, the Myeloma Research Fund, the McCarty Cancer Foundation, Nelson Arthur Hyland Foundation, and the ABC Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Keith Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, XY., Mandelbaum, S., Li, Z. et al. Tricistronic viral vectors co-expressing interleukin-12 (1L-12) and CD80 (B7-1) for the immunotherapy of cancer: Preclinical studies in myeloma. Cancer Gene Ther 8, 361–370 (2001). https://doi.org/10.1038/sj.cgt.7700321

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700321

Keywords

This article is cited by

Search

Quick links