Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pre-Clinical Studies

The effect of administration order of BU and CY on engraftment and toxicity in HSCT mouse model

Abstract

Conditioning regimens are an important issue determining the outcome of hematopoietic stem cell transplantation (HSCT). Less toxicity, early engraftment and no relapse are the aims of efficient conditioning. Our objective was to investigate the long-term effects of BU–CY and their administration order on the toxicity and chimerism in a mouse model of HSCT. Female BALB/c mice were treated with either BU (15 mg/kg/day × 4)–CY (100 mg/kg/day × 2) or CY–BU. Treated mice were transplanted with Sca-1+ cells from male BALB/c mice. Until 90 days after HSCT, the animals were monitored for body weight and analyzed for cellular phenotype of the thymus, spleen and BM, total chimerism, the spleen chimerism of DCs and T regulatory (Treg) cells, and hepatotoxicity. BU–CY and CY–BU treatments exerted comparable myeloablative and immunosuppressive effects. The long-term engraftment of donor cells in the BM and thymus regeneration showed the same features in both groups. However, the two regimens differed; in general, hepatotoxicity and chimerism of DC and Treg cells. In the long term, BU–CY, but not CY–BU caused a marked decrease in body weight and a significant increase in the activities of the liver enzymes, particularly aspartate amino transferase (AST). We conclude that the alteration of the administration order of BU–CY to CY–BU not only gives the same level of engraftment but also reduces the toxicity of the conditioning regimen that might be valuable specially in young patients who are undergoing HSCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Storb R . Allogeneic hematopoietic stem cell transplantation—yesterday, today, and tomorrow. Exp Hematol 2003; 31: 1–10.

    Article  PubMed  Google Scholar 

  2. Burt RK, Barr W, Oyama Y, Traynor A, Slavin S . Future strategies in hematopoietic stem cell transplantation for rheumatoid arthritis. J Rheumatol Suppl 2001; 64: 42–48.

    CAS  PubMed  Google Scholar 

  3. Little MT, Storb R . History of haematopoietic stem-cell transplantation. Nat Rev Cancer 2002; 2: 231–238.

    Article  CAS  PubMed  Google Scholar 

  4. Vriesendorp HM . Aims of conditioning. Exp Hematol 2003; 31: 844–854.

    Article  PubMed  Google Scholar 

  5. Tutschka PJ, Santos GW . Bone marrow transplantation in the busulfan-treated rat. I. Effect of cyclophosphamide and rabbit antirat thymocyte serum as immunosuppression. Transplantation 1975; 20: 101–106.

    Article  CAS  PubMed  Google Scholar 

  6. Mengarelli A, Iori A, Guglielmi C, Romano A, Cerretti R, Torromeo C et al. Standard versus alternative myeloablative conditioning regimens in allogeneic hematopoietic stem cell transplantation for high-risk acute leukemia. Haematologica 2002; 87: 52–58.

    CAS  PubMed  Google Scholar 

  7. Clift RA, Buckner CD, Thomas ED, Bensinger WI, Bowden R, Bryant E et al. Marrow transplantation for chronic myeloid leukemia: a randomized study comparing cyclophosphamide and total body irradiation with busulfan and cyclophosphamide. Blood 1994; 84: 2036–2043.

    CAS  PubMed  Google Scholar 

  8. Michel G, Gluckman E, Esperou-Bourdeau H, Reiffers J, Pico JL, Bordigoni P et al. Allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in first complete remission: impact of conditioning regimen without total-body irradiation—a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol 1994; 12: 1217–1222.

    Article  CAS  PubMed  Google Scholar 

  9. Davies SM, Ramsay NK, Klein JP, Weisdorf DJ, Bolwell B, Cahn JY et al. Comparison of preparative regimens in transplants for children with acute lymphoblastic leukemia. J Clin Oncol 2000; 18: 340–347.

    Article  CAS  PubMed  Google Scholar 

  10. Ringden O, Ruutu T, Remberger M, Nikoskelainen J, Volin L, Vindelov L et al. A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: a report from the Nordic Bone Marrow Transplantation Group. Blood 1994; 83: 2723–2730.

    CAS  PubMed  Google Scholar 

  11. Down JD, Tarbell NJ, Thames HD, Mauch PM . Syngeneic and allogeneic bone marrow engraftment after total body irradiation: dependence on dose, dose rate, and fractionation. Blood 1991; 77: 661–669.

    CAS  PubMed  Google Scholar 

  12. Guest I, Uetrecht J . Drugs toxic to the bone marrow that target the stromal cells. Immunopharmacology 2000; 46: 103–112.

    Article  CAS  PubMed  Google Scholar 

  13. de Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH . Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 2005; 44: 1135–1164.

    Article  CAS  PubMed  Google Scholar 

  14. Ringden O, Remberger M, Ruutu T, Nikoskelainen J, Volin L, Vindelov L et al. Increased risk of chronic graft-versus-host disease, obstructive bronchiolitis, and alopecia with busulfan versus total body irradiation: long-term results of a randomized trial in allogeneic marrow recipients with leukemia. Nordic Bone Marrow Transplantation Group. Blood 1999; 93: 2196–2201.

    CAS  PubMed  Google Scholar 

  15. Toubert ME, Socie G, Gluckman E, Aractingi S, Esperou H, Devergie A et al. Short- and long-term follow-up of thyroid dysfunction after allogeneic bone marrow transplantation without the use of preparative total body irradiation. Br J Haematol 1997; 98: 453–457.

    Article  CAS  PubMed  Google Scholar 

  16. Benyunes MC, Sullivan KM, Deeg HJ, Mori M, Meyer W, Fisher L et al. Cataracts after bone marrow transplantation: long-term follow-up of adults treated with fractionated total body irradiation. Int J Radiat Oncol Biol Phys 1995; 32: 661–670.

    Article  CAS  PubMed  Google Scholar 

  17. Vassal G, Hartmann O, Benhamou E . Busulfan and veno-occlusive disease of the liver. Ann Intern Med 1990; 112: 881.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshihara S, Tateishi U, Ando T, Kunitoh H, Suyama H, Onishi Y et al. Lower incidence of Bronchiolitis obliterans in allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning compared with myeloablative conditioning. Bone Marrow Transplant 2005; 35: 1195–1200.

    Article  CAS  PubMed  Google Scholar 

  19. Giraud G, Bogdanovic G, Priftakis P, Remberger M, Svahn BM, Barkholt L et al. The incidence of hemorrhagic cystitis and BK-viruria in allogeneic hematopoietic stem cell recipients according to intensity of the conditioning regimen. Haematologica 2006; 91: 401–404.

    PubMed  Google Scholar 

  20. Claessens JJ, Beerendonk CC, Schattenberg AV . Quality of life, reproduction and sexuality after stem cell transplantation with partially T-cell-depleted grafts and after conditioning with a regimen including total body irradiation. Bone Marrow Transplant 2006; 37: 831–836.

    Article  CAS  PubMed  Google Scholar 

  21. Ferry C, Socie G . Busulfan–cyclophosphamide versus total body irradiation–cyclophosphamide as preparative regimen before allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia: what have we learned? Exp Hematol 2003; 31: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  22. Nilsson C, Forsman J, Hassan Z, Abedi-Valugerdi M, O'Connor C, Concha H et al. Effect of altering administration order of busulphan and cyclophosphamide on the myeloablative and immunosuppressive properties of the conditioning regimen in mice. Exp Hematol 2005; 33: 380–387.

    Article  CAS  PubMed  Google Scholar 

  23. Hassan Z, Nilsson C, Hassan M . Liposomal busulphan: bioavailability and effect on bone marrow in mice. Bone Marrow Transplant 1998; 22: 913–918.

    Article  CAS  PubMed  Google Scholar 

  24. Weber-Matthiesen K, Winkemann M, Muller-Hermelink A, Schlegelberger B, Grote W . Simultaneous fluorescence immunophenotyping and interphase cytogenetics: a contribution to the characterization of tumor cells. J Histochem Cytochem 1992; 40: 171–175.

    Article  CAS  PubMed  Google Scholar 

  25. Weber-Matthiesen K, Deerberg J, Poetsch M, Grote W, Schlegelberger B . Numerical chromosome aberrations are present within the CD30+ Hodgkin and Reed–Sternberg cells in 100% of analyzed cases of Hodgkin's disease. Blood 1995; 86: 1464–1468.

    CAS  PubMed  Google Scholar 

  26. Dunn CD . The chemical and biological properties of busulphan (‘Myleran’). Exp Hematol 1974; 2: 101–117.

    CAS  PubMed  Google Scholar 

  27. Westerhof GR, Ploemacher RE, Boudewijn A, Blokland I, Dillingh JH, McGown AT et al. Comparison of different busulfan analogues for depletion of hematopoietic stem cells and promotion of donor-type chimerism in murine bone marrow transplant recipients. Cancer Res 2000; 60: 5470–5478.

    CAS  PubMed  Google Scholar 

  28. Santos GW, Tutschka PJ, Brookmeyer R, Saral R, Beschorner WE, Bias WB et al. Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N Engl J Med 1983; 309: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  29. Parkman R, Rappeport JM, Hellman S, Lipton J, Smith B, Geha R et al. Busulfan and total body irradiation as antihematopoietic stem cell agents in the preparation of patients with congenital bone marrow disorders for allogenic bone marrow transplantation. Blood 1984; 64: 852–857.

    CAS  PubMed  Google Scholar 

  30. Mitsuyasu RT, Champlin RE, Gale RP, Ho WG, Lenarsky C, Winston D et al. Treatment of donor bone marrow with monoclonal anti-T-cell antibody and complement for the prevention of graft-versus-host disease. A prospective, randomized, double-blind trial. Ann Intern Med 1986; 105: 20–26.

    Article  CAS  PubMed  Google Scholar 

  31. Hanash AM, Levy RB . Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood 2005; 105: 1828–1836.

    Article  CAS  PubMed  Google Scholar 

  32. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S . Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196: 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matte CC, Liu J, Cormier J, Anderson BE, Athanasiadis I, Jain D et al. Donor APCs are required for maximal GVHD but not for GVL. Nat Med 2004; 10: 987–992.

    Article  CAS  PubMed  Google Scholar 

  34. Dix SP, Wingard JR, Mullins RE, Jerkunica I, Davidson TG, Gilmore CE et al. Association of busulfan area under the curve with veno-occlusive disease following BMT. Bone Marrow Transplant 1996; 17: 225–230.

    CAS  PubMed  Google Scholar 

  35. McDonald GB, Slattery JT, Bouvier ME, Ren S, Batchelder AL, Kalhorn TF et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003; 101: 2043–2048.

    Article  CAS  PubMed  Google Scholar 

  36. DeLeve LD . Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology 1996; 24: 830–837.

    Article  CAS  PubMed  Google Scholar 

  37. Deeg HJ, Storer B, Slattery JT, Anasetti C, Doney KC, Hansen JA et al. Conditioning with targeted busulfan and cyclophosphamide for hemopoietic stem cell transplantation from related and unrelated donors in patients with myelodysplastic syndrome. Blood 2002; 100: 1201–1207.

    Article  CAS  PubMed  Google Scholar 

  38. McCune JS, Batchelder A, Deeg HJ, Gooley T, Cole S, Phillips B et al. Cyclophosphamide following targeted oral busulfan as conditioning for hematopoietic cell transplantation: pharmacokinetics, liver toxicity, and mortality. Biol Blood Marrow Transplant 2007; 13: 853–862.

    Article  CAS  PubMed  Google Scholar 

  39. Bushhouse S, Ramsay NK, Pescovitz OH, Kim T, Robison LL . Growth in children following irradiation for bone marrow transplantation. Am J Pediatr Hematol Oncol 1989; 11: 134–140.

    CAS  PubMed  Google Scholar 

  40. Millar JL, Hudspith BN, Blackett NM . Reduced lethality in mice receiving a combined dose of cyclophosphamide and busulphan. Br J Cancer 1975; 32: 193–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Millar JL, McElwain TJ . Combinations of cytotoxic agents that have less than expected toxicity on normal tissues in mice. Antibiot Chemother 1978; 23: 271–282.

    Article  CAS  PubMed  Google Scholar 

  42. Bomberger C, Singh-Jairam M, Rodey G, Guerriero A, Yeager AM, Fleming WH et al. Lymphoid reconstitution after autologous PBSC transplantation with FACS-sorted CD34+ hematopoietic progenitors. Blood 1998; 91: 2588–2600.

    CAS  PubMed  Google Scholar 

  43. Weinberg K, Annett G, Kashyap A, Lenarsky C, Forman SJ, Parkman R . The effect of thymic function on immunocompetence following bone marrow transplantation. Biol Blood Marrow Transplant 1995; 1: 18–23.

    CAS  PubMed  Google Scholar 

  44. Storek J, Witherspoon RP, Storb R . T cell reconstitution after bone marrow transplantation into adult patients does not resemble T cell development in early life. Bone Marrow Transplant 1995; 16: 413–425.

    CAS  PubMed  Google Scholar 

  45. Hassan M, Ljungman P, Ringden O, Hassan Z, Oberg G, Nilsson C et al. The effect of busulphan on the pharmacokinetics of cyclophosphamide and its 4-hydroxy metabolite: time interval influence on therapeutic efficacy and therapy-related toxicity. Bone Marrow Transplant 2000; 25: 915–924.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Cancer Foundation and the Swedish Children Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, B., Jansson, M., Hassan, Z. et al. The effect of administration order of BU and CY on engraftment and toxicity in HSCT mouse model. Bone Marrow Transplant 41, 895–904 (2008). https://doi.org/10.1038/sj.bmt.1705996

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705996

Keywords

This article is cited by

Search

Quick links