Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mobilization

High-dose ara-C with autologous peripheral blood progenitor cell support induces a marked progenitor cell mobilization: an indication for patients at risk for low mobilization

Abstract

A high-dose (HD) chemotherapy scheme was designed for the collection of large numbers of peripheral blood progenitor cells (PBPC) in lymphoma patients who were candidates for myeloablative therapy with autograft. The scheme included the sequential administration of HD cyclophosphamide (CY) (7 g/m2) and HD ara-C (2 g/m2 twice a day for 6 consecutive days), followed by final consolidation with PBPC autograft. PBPC harvests were scheduled following both HD CY and HD ara-C. To minimize hematologic toxicity, small aliquots of PBPC (3 × 106 CD34+ cells/kg) collected following HD CY were reinfused following HD ara-C. The treatment was delivered to 112 patients (median age: 43 years) with lymphoid malignancies (107 non-Hodgkin's lymphoma, four Hodgkin's lymphoma, one amyloidosis); 75 patients were at disease onset, whereas 37 had relapsed or were refractory after first-line conventional therapy. PBPC mobilization was assessed in terms of peak values of circulating CD34+ cells/μl, as well as total CD34+ cells/kg collected. In a few patients CFU-GM/kg were also evaluated. At the time of maximal mobilization following HD CY, 93 ‘high-mobilizer’ patients had >20 circulating CD34+ cells/μl, whereas the remaining 19 ‘low-mobilizer’ patients did not reach this cut-off value. In spite of poor mobilization after HD CY, 16 out of 19 low mobilizers provided good harvests following HD ara-C; overall, median collected CD34+ cells × 106/kg were 1.4 (0–3.1) and 10.2 (0–37) after HD CY and HD ara-C, respectively (P = 0.00007). Similar patterns were observed when PBPC were evaluated by CFU-GM/kg. Complete and durable hemopoietic reconstitution followed autograft with post HD ara-C PBPC. Within the high-mobilizer group, 88 patients received HD ara-C and 79 (90%) still showed high mobilization; overall, median collected CD34+cells × 106/kg were 17.8 (range 3–94) and 19 (range 0–107) after HD CY and HD ara-C respectively (P = NS). Thus, the scheme allowed sufficient PBPC collections for autografting in low mobilizer patients; in addition, the scheme could be considered whenever extensive chemotherapy debulking is needed prior to PBPC collection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gratwohl A, Passweg J, Baldomero H, Hermans J . Blood and marrow transplantation activity in Europe 1997. European Group for Blood and Bone Marrow Transplant Bone Marrow Transplant 1999 24: 231 245

    Article  CAS  Google Scholar 

  2. Shipp MA, Abeloff MD, Antman KH et al. International Consensus Conference on high-dose therapy with hematopoietic stem cell transplantation in aggressive non-Hodgkin's lymphoma: report of the jury J Clin Oncol 1999 17: 423 429

    Article  CAS  Google Scholar 

  3. Salles G, Coiffier B . Autologous peripheral blood stem cell transplantation for non-Hodgkin's lymphoma Baillières Best Pract Res Clin Haematol 1999 12: 151 163

    Article  CAS  Google Scholar 

  4. Linch DC, Winfield D, Goldstone AH et al. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin's disease: results of a BNLI randomised trial Lancet 1993 341: 1051 1054

    Article  CAS  Google Scholar 

  5. Philip T, Guglielmi C, Hagenbeck A et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin's lymphoma New Engl J Med 1995 333: 1540 1545

    Article  CAS  Google Scholar 

  6. Rohatiner AZ, Johnson PW, Price CG et al. Myeloablative therapy with autologous bone marrow transplantation as consolidation therapy for recurrent follicular lymphoma J Clin Oncol 1994 12: 1177 1184

    Article  CAS  Google Scholar 

  7. Freedman AS, Neuberg D, Mauch P et al. Long-term follow-up of autologous bone marrow transplantation in patients with relapsed follicular lymphoma Blood 1999 94: 3325 3333

    CAS  Google Scholar 

  8. Pettengell R, Radford JA, Morgenstern GR et al. Survival benefit from high-dose therapy with autologous blood progenitor-cell transplantation in poor-prognosis non-Hodgkin's lymphoma J Clin Oncol 1996 14: 586 592

    Article  CAS  Google Scholar 

  9. Gianni AM, Bregni M, Siena S et al. High-dose chemotherapy and autologous bone marrow transplantation compared with MACOP-B in aggressive B-cell lymphoma New Engl J Med 1997 336: 1290 1297

    Article  CAS  Google Scholar 

  10. Cortelazzo S, Rossi A, Viero P et al. BEAM chemotherapy and autologous haemopoietic progenitor cell transplantation as front-line therapy for high-risk patients with diffuse large cell lymphoma Br J Haematol 1997 99: 379 385

    Article  CAS  Google Scholar 

  11. Haioun C, Lepage E, Gisselbrecht C et al. Survival benefit of high-dose therapy in poor-risk aggressive non-Hodgkin's lymphoma: final analysis of the prospective LNH87-2 protocol – a Groupe d'Etude des Lymphomes de l'Adulte J Clin Oncol 2000 18: 3025 3030

    Article  CAS  Google Scholar 

  12. Bastion Y, Brice P, Haioun C et al. Intensive therapy with peripheral blood progenitor cell transplantation in 60 patients with poor-prognosis follicular lymphoma Blood 1995 86: 3257 3262

    CAS  Google Scholar 

  13. Tarella C, Caracciolo D, Corradini P et al. Long-term follow-up of advanced-stage low-grade lymphoma patients treated upfront with high-dose sequential chemotherapy and autograft Leukemia 2000 14: 740 747

    Article  CAS  Google Scholar 

  14. Horning SJ, Negrin RS, Hoppe RT et al. High-dose therapy and autologous bone marrow transplantation for follicular lymphoma in first complete or partial remission: results of a phase II clinical trial Blood 2001 97: 404 409

    Article  CAS  Google Scholar 

  15. Gianni AM, Siena S, Bregni M et al. Granulocyte–macrophage colony-stimulating factor to harvest circulating haematopoietic stem cells for autotransplantation Lancet 1989 2: 580 585

    Article  CAS  Google Scholar 

  16. Schmitz N, Linch DC, Dreger P et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone marrow transplantation in lymphoma patients Lancet 1996 347: 353 357

    Article  CAS  Google Scholar 

  17. Hartmann O, Le Corroller AG, Blaise D et al. Peripheral blood stem cell and bone marrow transplantation for solid tumors and lymphoma: hematologic recovery and cost Ann Intern Med 1997 126: 600 607

    Article  CAS  Google Scholar 

  18. Siena S, Bregni M, Di Nicola M et al. Durability of hematopoiesis following autografting with peripheral blood hematopoietic progenitors Ann Oncol 1994 5: 935 941

    Article  CAS  Google Scholar 

  19. Weaver CH, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collection in 692 patients after the administration of myeloablative chemotherapy Blood 1995 86: 3961 3969

    CAS  Google Scholar 

  20. Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C . Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy J Clin Oncol 2000 18: 1360 1377

    Article  CAS  Google Scholar 

  21. Haas R, Mohle R, Fruhauf S et al. Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma Blood 1994 83: 3787 3794

    CAS  Google Scholar 

  22. Bensinger WI, Longin K, Appelbaum F et al. Peripheral blood stem cells (PBPCs) collected after recombinant granulocyte colony stimulating factor (rhG-CSF): an analysis of factors correlating with the tempo of engraftment after transplantation Br J Haematol 1994 87: 825 831

    Article  CAS  Google Scholar 

  23. Dreger P, Kloss M, Petersen B et al. Autologous progenitor cell transplantation: prior exposure to stem cell-toxic drugs determines yield and engraftment of peripheral blood progenitor cell but not of bone marrow grafts Blood 1995 86: 3970 3978

    CAS  Google Scholar 

  24. Watts MJ, Sullivan AM, Jamieson E et al. Progenitor-cell mobilization after low-dose cyclophosphamide and granulocyte colony-stimulating factor: an analysis of progenitor-cell quantity and quality and factors predicting for these parameters in 101 pretreated patients with malignant lymphoma J Clin Oncol 1997 15: 535 546

    Article  CAS  Google Scholar 

  25. Tarella C, Castellino C, Cherasco C et al. Peripheral blood progenitor cell mobilization in patients with primary refractory lymphoma or at first relapse: comparison with patients at diagnosis and impact on clinical outcome Br J Haematol 1997 99: 41 46

    Article  CAS  Google Scholar 

  26. Shadduck RK, Zeigler ZR, Andrews DF et al. Mobilization and transplantation of peripheral blood stem cells Stem Cells 1998 16: 145 158

    Article  Google Scholar 

  27. Bregni M, Siena S, Di Nicola M et al. Comparative effect of granulocyte-macrophage-colony stimulating factor and granulocyte-colony stimulating factor after high-dose cyclophosphamide cancer therapy J Clin Oncol 1996 14: 628 635

    Article  CAS  Google Scholar 

  28. Sheridan WP, Begley CG, Juttner C et al. Effect of peripheral blood progenitor cells mobilized by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy Lancet 1992 i: 640 644

    Article  Google Scholar 

  29. Bensinger W, Singer J, Appelbaum F et al. Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor Blood 1993 81: 3158 3163

    CAS  Google Scholar 

  30. Narayanasami U, Kanteti R, Morelli J et al. Randomized trial of filgrastim versus chemotherapy and filgrastim mobilization of hematopoietic progenitor cells for rescue in autologous transplantation Blood 2001 98: 2059 2064

    Article  CAS  Google Scholar 

  31. Moss TJ, Ross AA . The risk of tumor cell contamination in peripheral blood stem cell collections J Hematother 1992 1: 225 232

    Article  CAS  Google Scholar 

  32. McCann JC, Kanteti R, Shilepsky B et al. High degree of occult tumor contamination in bone marrow and peripheral blood stem cells of patients undergoing autologous transplantation for non-Hodgkin's lymphoma Biol Blood Marrow Transplant 1996 2: 37 43

    CAS  PubMed  Google Scholar 

  33. Corradini P, Ladetto M, Pileri A, Tarella C . Clinical relevance of minimal residual disease monitoring in non-Hodgkin's lymphomas: a critical reappraisal of molecular strategies Leukemia 1999 13: 1691 1695

    Article  CAS  Google Scholar 

  34. Akard LP, Wiemann M, Thompson JM et al. Impaired stem cell collection by consecutive courses of high-dose mobilizing chemotherapy using cyclophosphamide, etoposide, and G-CSF J Hematother 1996 5: 271 277

    Article  CAS  Google Scholar 

  35. Tarella C, Caracciolo D, Gavarotti P et al. Circulating progenitors following high-dose sequential (HDS) chemotherapy with G-CSF: short intervals between drug courses severely impair progenitor mobilization Bone Marrow Transplant 1995 16: 223 228

    CAS  PubMed  Google Scholar 

  36. Weinstein HJ, Cassady JR, Levey R . Long-term results of the APO protocol (vincristine, doxorubicin (Adriamycin), and prednisone) for treatment of mediastinal lymphoblastic lymphoma J Clin Oncol 1983 1: 537 541

    Article  CAS  Google Scholar 

  37. Tarella C, Zallio F, Caracciolo D et al. High-dose mitoxantrone + melphalan (MITO/L-PAM) as conditioning regimen supported by peripheral blood progenitor cell (PBPC) autograft in 113 lymphoma patients: high tolerability with reversible cardiotoxicity Leukemia 2001 15: 256

    Article  CAS  Google Scholar 

  38. Tarella C, Castellino C, Locatelli F et al. G-CSF administration following peripheral blood progenitor cell (PBPC) autograft in lymphoid malignancies: evidence for clinical benefits and reduction of treatment costs Bone Marrow Transplant 1998 21: 401 407

    Article  CAS  Google Scholar 

  39. Siena S, Bregni M, Di Nicola M et al. Milan protocol for clinical CD34+ cell estimation in peripheral blood for autografting in patients with cancer In: Wunder E (ed.) Hematopoietic Stem Cells, The Mulhouse Manual AlphaMed Press: Dayton, OH 1994 pp 23 30

    Google Scholar 

  40. Armitage S, Hargreaves R, Samson D et al. CD34 counts to predict the adequate collection of peripheral blood progenitor cells Bone Marrow Transplant 1997 20: 587 591

    Article  CAS  Google Scholar 

  41. Rosenfeld CS, Bolwell B, Lefever A et al. Comparison of four cytokine regimens for mobilization of peripheral blood stem cells: IL-3 alone and combined with GM-CSF or G-CSF Bone Marrow Transplant 1996 17: 179 183

    CAS  PubMed  Google Scholar 

  42. Moskowitz CH, Stiff P, Gordon MS et al. Recombinant methionyl human stem cell factor and filgrastim for peripheral blood progenitor cell mobilization and transplantation in non-Hodgkin's lymphoma patients – results of a phase I/II trial Blood 1997 89: 3136 3147

    CAS  PubMed  Google Scholar 

  43. Weaver A, Chang J, Wrigley E et al. Randomized comparison of progenitor-cell mobilization using chemotherapy, stem-cell factor, and filgrastim or chemotherapy plus filgrastim alone in patients with ovarian cancer J Clin Oncol 1998 16: 2601 2612

    Article  CAS  Google Scholar 

  44. Stiff P, Gingrich R, Luger S et al. A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin's disease or non-Hodgkin's lymphoma Bone Marrow Transplant 2000 26: 471 481

    Article  CAS  Google Scholar 

  45. Rasko JE, Basser RL, Boyd J et al. Multilineage mobilization of peripheral blood progenitor cells in humans following administration of PEG-rHuMGDF Br J Haematol 1997 97: 871 880

    Article  CAS  Google Scholar 

  46. Weaver CH, Schulman K, Wilson-Relyea B et al. Randomized trial of filgrastim, sargramostim or sequential sargramostim and filgrastim after myelosuppressive chemotherapy from the harvesting of peripheral-blood stem cells J Clin Oncol 2000 18: 43 53

    Article  CAS  Google Scholar 

  47. Carlo Stella C, Cazzola M, De Fabritiis P et al. CD34-positive cells: biology and clinical relevance Haematologica 1995 80: 367 387

    Google Scholar 

  48. Koç ON, Gerson SL, Cooper BW et al. Randomized cross-over trial of progenitor-cell mobilization: high-dose cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) versus granulocyte-macrophage colony-stimulating factor plus G-CSF J Clin Oncol 2000 18: 1824 1830

    Article  Google Scholar 

  49. Michallet M, Thiebaut A, Dreger P et al. Peripheral blood stem cell (PBSC) mobilization and transplantation after fludarabine therapy in chronic lymphocytic leukaemia (CLL): a report of the European Blood and Marrow Transplantation (EBMT) CLL subcommittee on behalf of the EBMT Chronic Leukaemias Working Party (CLWP) Br J Haematol 2000 108: 595 601

    Article  CAS  Google Scholar 

  50. Kroger N, Rauhoft C, Zeller W et al. Efficacy of further attempts to mobilize CD34+ peripheral stem cells with alternative procedures after primary failure Acta Haematol 2000 102: 144 147

    Article  CAS  Google Scholar 

  51. Watts MJ, Ings SJ, Flynn M et al. Remobilization of patients who fail to achieve minimal progenitor thresholds at the first attempt is clinically worthwhile Br J Haematol 2000 111: 287 291

    Article  CAS  Google Scholar 

  52. Jacquy C, Soree A, Lambert F et al. A quantitative study of peripheral blood stem cell contamination in diffuse large-cell non-Hodgkin's lymphoma: one-half of patients significantly mobilize malignant cells Br J Haematol 2000 110: 631 637

    Article  CAS  Google Scholar 

  53. Hardingham JE, Kotasek D, Sage RE et al. Significance of molecular marker-positive cells after autologous peripheral-blood stem-cell transplantation for non-Hodgkin's lymphoma J Clin Oncol 1995 13: 1073 1079

    Article  CAS  Google Scholar 

  54. Corradini P, Astolfi M, Cherasco C et al. Molecular monitoring of minimal residual disease in follicular and mantle cell non-Hodgkin's lymphomas treated with high-dose chemotherapy and peripheral blood progenitor cell autografting Blood 1997 89: 724 731

    CAS  Google Scholar 

  55. Tarella C, Ferrero D, Siena S et al. Conditions influencing the expansion of the circulating hemopoietic progenitor cell compartment Haematologica 1990 75: (Suppl. 1) 11 14

    PubMed  Google Scholar 

  56. Gianni AM, Bregni M, Siena S et al. Granulocyte–macrophage colony-stimulating factor or granulocyte colony-stimulating factor infusion makes high-dose etoposide a safe outpatient regimen that is effective in lymphoma and myeloma patients J Clin Oncol 1992 10: 195 262

    Article  Google Scholar 

  57. Kanfer EJ, McGuigan D, Samson D et al. High-dose etoposide with granulocyte colony-stimulating factor for mobilization of peripheral blood progenitor cells: efficacy and toxicity three dose levels Br J Cancer 1998 78: 928 932

    Article  CAS  Google Scholar 

  58. Perry AR, Watts MJ, Peniket AJ et al. Progenitor cell yields are frequently poor in patients with histologically indolent lymphomas especially when mobilized within 6 months of previous chemotherapy Bone Marrow Transplant 1998 21: 1201 1205

    Article  CAS  Google Scholar 

  59. Tarella C, Zallio F, Caracciolo D et al. Hemopoietic progenitor cell mobilization and harvest following an intensive chemotherapy debulking in indolent lymphoma patients Stem Cells 1999 17: 55 61

    Article  CAS  Google Scholar 

  60. Dreyfus F, Leblond V, Belanger C et al. Peripheral blood stem cell collection and autografting in high risk lymphoma Bone Marrow Transplant 1992 10: 409 413

    CAS  PubMed  Google Scholar 

  61. Shimazaki C, Oku N, Ashihara E et al. Collection of peripheral blood stem cells mobilized by high-dose ara-C plus VP-16 or aclarubicin followed by recombinant human granulocyte-colony stimulating factor Bone Marrow Transplant 1992 10: 341 346

    CAS  PubMed  Google Scholar 

  62. Voso MT, Pantel G, Weis M et al. In vivo depletion of B cells using a combination of high-dose cytosine arabinoside/mitoxantrone and rituximab for autografting in patients with non-Hodgkin's lymphoma Br J Haematol 2000 109: 729 735

    Article  CAS  Google Scholar 

  63. Magni M, Di Nicola M, Devizzi L et al. Successful in vivo purging of CD34-containing peripheral blood harvests in mantle cell and indolent lymphoma: evidence for a role of both chemotherapy and rituximab infusion Blood 2000 96: 854 861

    Google Scholar 

  64. Flinn IW, O'Donnell PV, Goodrich A et al. Immunotherapy with rituximab during peripheral blood stem cell transplantation for non-Hodgkin's lymphoma Biol Blood Marrow Transplant 2000 6: 628 632

    Article  CAS  Google Scholar 

  65. Ladetto M, Zallio F, Vallet S et al. Concurrent delivery of high-dose sequential chemotherapy and Rituximab (R-HDS): a feasible and effective approach for high-risk patients with aggressive and indolent non-Hodgkin's lymphoma Leukemia 2001 15: 1941 1949

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Consiglio Nazionale delle Ricerche, Rome, Italy (special project ACRO, grant No 96.00742.PF39 to CT), by Ministero della Sanità grant ICS No 030.1/RF96.278, by Associazione Italiana Ricerca sul Cancro, Milan and by Compagnia S Paolo, Torino, Italy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarella, C., Di Nicola, M., Caracciolo, D. et al. High-dose ara-C with autologous peripheral blood progenitor cell support induces a marked progenitor cell mobilization: an indication for patients at risk for low mobilization. Bone Marrow Transplant 30, 725–732 (2002). https://doi.org/10.1038/sj.bmt.1703729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703729

Keywords

This article is cited by

Search

Quick links