Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Spatially offset Raman spectroscopy

Abstract

Spatially offset Raman spectroscopy (SORS) is a spectroscopic technique that allows for the non-invasive chemical characterization of diffusely scattering materials, ranging from opaque plastics to biological tissues. SORS has been explored for a range of applications, including disease diagnosis, the detection of explosives through unopened containers and the in-depth, non-destructive analysis of pharmaceutical products and objects of art. This Primer introduces the reader to the basic concepts underpinning SORS, details best practices for its implementation, highlights its use across multiple fields and provides insight into its limitations. The Primer concludes by discussing potential applications and envisaging future developments in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Raman scattering.
Fig. 2: The SORS concept.
Fig. 3: Schematic of the SORS instrumental set-up.
Fig. 4: Variants of SORS.
Fig. 5: Representative SORS spectra from a two-layer system.
Fig. 6: Analysing the contents of a plastic container.
Fig. 7: Analysing neurotransmitters using SESORS.

Similar content being viewed by others

References

  1. Pelletier, M. J. in Analytical Applications of Raman Spectroscopy 10–105 (Wiley, 1999).

  2. Matousek, P. Spatially offset Raman spectroscopy for non-invasive analysis of turbid samples. Trends Analyt. Chem. 103, 209–214 (2018).

    Google Scholar 

  3. Long, D. A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, 2002).

  4. Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D. & Valev, V. K. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. 14, 231 (2019).

    ADS  Google Scholar 

  5. Tuschel, D. Raman thermometry. Spectroscopy 31, 8–13 (2016).

    Google Scholar 

  6. Iwata, K., Ozawa, R. & Hamaguchi, H. Analysis of the solvent- and temperature-dependent Raman spectral changes of S1 trans-stilbene and the mechanism of the trans to cis isomerization: dynamic polarization model of vibrational dephasing and the C=C double-bond rotation. J. Phys. Chem. A 106, 3614–3620 (2002).

    Google Scholar 

  7. Singh, A., Gangopadhyay, D., Nandi, R., Sharma, P. & Singh, R. K. Raman signatures of strong and weak hydrogen bonds in binary mixtures of phenol with acetonitrile, benzene and orthodichlorobenzene. J. Raman Spectrosc. 47, 712–719 (2016).

    ADS  Google Scholar 

  8. Wang, H. et al. Effects of hydrogen bond and solvent polarity on the C=O stretching of bis(2-thienyl)ketone in solution. J. Chem. Phys. 136, 124509 (2012).

    ADS  Google Scholar 

  9. Hashimoto, K., Badarla, V. R., Kawai, A. & Ideguchi, T. Complementary vibrational spectroscopy. Nat. Commun. 10, 4411 (2019).

    ADS  Google Scholar 

  10. Matousek, P. & Morris, M. D. Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer, 2010).

  11. Nicolson, F., Kircher, M. F., Stone, N. & Matousek, P. Spatially offset Raman spectroscopy for biomedical applications. Chem. Soc. Rev. 50, 556–568 (2021).

    Google Scholar 

  12. Matousek, P. Deep non-invasive Raman spectroscopy of living tissue and powders. Chem. Soc. Rev. 36, 1292 (2007).

    Google Scholar 

  13. Matousek, P. et al. Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl. Spectrosc. 59, 393–400 (2005). This paper is the first conceptual demonstration of SORS.

    ADS  Google Scholar 

  14. Martelli, F., Bianco, S. del, Ismaelli, A. & Zaccanti, G. Light Propagation Through Biologial Tissue and Other Diffusive Media: Theory, Solutions, and Software (Bellingham, 2009).

  15. Pfefer, T. J., Schomacker, K. T., Ediger, M. N. & Nishioka, N. S. Multiple-fiber probe design for fluorescence spectroscopy in tissue. Appl. Opt. 41, 4712 (2002).

    ADS  Google Scholar 

  16. Shi, L. & Alfano, R. Deep Imaging in Tissue and Biomedical Materials: Using Linear and Non-linear Optical Methods (CSC, 2017).

  17. Iping Petterson, I. E., Esmonde-White, F. W. L., de Wilde, W., Morris, M. D. & Ariese, F. Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy. Analyst 140, 2504–2512 (2015).

    ADS  Google Scholar 

  18. Gardner, B., Matousek, P. & Stone, N. Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-stokes spatially offset Raman spectroscopy. Anal. Chem. 88, 832–837 (2016).

    Google Scholar 

  19. Everall, N. et al. Measurement of spatial resolution and sensitivity in transmission and backscattering Raman spectroscopy of opaque samples: impact on pharmaceutical quality control and Raman tomography. Appl. Spectrosc. 64, 476–484 (2010).

    ADS  Google Scholar 

  20. Oelkrug, D., Ostertag, E. & Kessler, R. W. Quantitative Raman spectroscopy in turbid matter: reflection or transmission mode? Anal. Bioanal. Chem. 405, 3367–3379 (2013).

    Google Scholar 

  21. Zaccanti, G., Del Bianco, S. & Martelli, F. Measurements of optical properties of high-density media. Appl. Opt. 42, 4023 (2003).

    ADS  Google Scholar 

  22. Pogue, B. W. & Patterson, M. S. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory tissue volumes using diffusion theory. Phys. Med. Biol. 39, 1157–1180 (1994).

    Google Scholar 

  23. Spinelli, L. et al. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method. Opt. Express 15, 6589 (2007).

    ADS  Google Scholar 

  24. Bouchard, J.-P. et al. Reference optical phantoms for diffuse optical spectroscopy. Part 1 — error analysis of a time resolved transmittance characterization method. Opt. Express 18, 11495 (2010).

    ADS  Google Scholar 

  25. Patterson, M. S., Chance, B. & Wilson, B. C. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 2331–2336 (1989).

    ADS  Google Scholar 

  26. Mosca, S. et al. Estimating the reduced scattering coefficient of turbid media using spatially offset Raman spectroscopy. Anal. Chem. https://doi.org/10.1021/acs.analchem.0c04290 (2021).

    Article  Google Scholar 

  27. Das, B. B., Liu, F. & Alfano, R. R. Time-resolved fluorescence and photon migration studies in biomedical and model random media. Rep. Prog. Phys 60, 227 (1997).

    ADS  Google Scholar 

  28. Brenan, C. J. H. & Hunter, I. W. Volumetric Raman microscopy through a turbid medium. J. Raman Spectrosc. 27, 561–570 (1996).

    ADS  Google Scholar 

  29. Mosca, S. et al. Optical characterisation of porcine tissues from various organs in the 650–1100 nm range using time-domain diffuse spectroscopy. Biomed. Opt. Express 11, 1697–1706 (2020).

    Google Scholar 

  30. Stevens, O., Iping Petterson, I. E., Day, J. C. C. & Stone, N. Developing fibre optic Raman probes for applications in clinical spectroscopy. Chem. Soc. Rev. 45, 1919–1934 (2016).

    Google Scholar 

  31. McGee, R., Blanco, A., Presly, O. & Stokes, R. J. Portable spatially offset Raman spectroscopy for rapid hazardous materials detection within sealed containers. Spectroscopy 33, 24–30 (2018).

    Google Scholar 

  32. Matousek, P., Towrie, M. & Parker, A. W. Fluorescence background suppression in Raman spectroscopy using combined Kerr gated and shifted excitation Raman difference techniques. J. Raman Spectrosc. 33, 238–242 (2002).

    ADS  Google Scholar 

  33. Cebeci-Maltaş, D., Wang, P., Alam, M. A., Pinal, R. & Ben-Amotz, D. Photobleaching profile of Raman peaks and fluorescence background. Eur. Pharm. Rev. 22, 18–21 (2017).

    Google Scholar 

  34. Ghirardello, M. et al. Time-resolved photoluminescence microscopy combined with X-ray analyses and Raman spectroscopy sheds light on the imperfect synthesis of historical cadmium pigments. Anal. Chem. 90, 10771–10779 (2018).

    Google Scholar 

  35. Afseth, N. K., Bloomfield, M., Wold, J. P. & Matousek, P. A novel approach for subsurface through-skin analysis of salmon using spatially offset Raman spectroscopy (SORS). Appl. Spectrosc. 68, 255–262 (2014).

    ADS  Google Scholar 

  36. Conti, C., Colombo, C., Realini, M. & Matousek, P. Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS). J. Raman Spectrosc. 46, 476–482 (2015).

    ADS  Google Scholar 

  37. Conti, C. et al. Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy. Anal. Chem. 87, 5810–5815 (2015).

    Google Scholar 

  38. American National Standard Institute. American National Standard for Safe Use of Lasers (ANSI Z136.1-2014) (Laser Institute of America, 2014).

  39. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn (Cambridge Univ. Press, 2005).

  40. Matousek, P. et al. Noninvasive Raman spectroscopy of human tissue in vivo. Appl. Spectrosc. 60, 758–763 (2006).

    ADS  Google Scholar 

  41. Ghita, A., Matousek, P. & Stone, N. High sensitivity non-invasive detection of calcifications deep inside biological tissue using transmission Raman spectroscopy. J. Biophotonics 11, e201600260 (2018).

    Google Scholar 

  42. Mosca, S. et al. Spatially offset and transmission Raman spectroscopy for determination of depth of inclusion in turbid matrix. Anal. Chem. 91, 8994–9000 (2019).

    Google Scholar 

  43. Esmonde-White, F. W. L., Esmonde-White, K. A. & Morris, M. D. Minor distortions with major consequences: correcting distortions in imaging spectrographs. Appl. Spectrosc. 65, 85–98 (2011).

    ADS  Google Scholar 

  44. Thomas, G. et al. Evaluating feasibility of an automated 3-dimensional scanner using Raman spectroscopy for intraoperative breast margin assessment. Sci. Rep. 7, 1–14 (2017).

    Google Scholar 

  45. Qin, J. et al. A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy. J. Raman Spectrosc. 47, 437–443 (2016).

    ADS  Google Scholar 

  46. Olds, W. J. et al. Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs. Forensic Sci. Int. 212, 69–77 (2011).

    Google Scholar 

  47. Maher, J. R. & Berger, A. J. Determination of ideal offset for spatially offset Raman spectroscopy. Appl. Spectrosc. 64, 61–65 (2010).

    ADS  Google Scholar 

  48. Ghita, A., Matousek, P. & Stone, N. Sensitivity of transmission Raman spectroscopy signals to temperature of biological tissues. Sci. Rep. 8, 1–7 (2018).

    Google Scholar 

  49. Hossain, M. N., Igne, B., Anderson, C. A. & Drennen, J. K. Influence of moisture variation on the performance of Raman spectroscopy in quantitative pharmaceutical analyses. J. Pharm. Biomed. Anal. 164, 528–535 (2019).

    Google Scholar 

  50. Mestari, A., Gaufrès, R. & Huguet, P. Behaviour of the calibration of a Raman spectrometer with temperature changes. J. Raman Spectrosc. 28, 785–789 (1997).

    ADS  Google Scholar 

  51. ASTM E1840-96. Standard Guide for Raman Shift Standards for Spectrometer Calibration (ASTM International, 2014).

  52. Allen, M. W. & Mattley, Y. Innovative Raman sampling. New technique addresses challenges associated with explosives and other sensitive samples. Optik Photonik 8, 44–47 (2013).

    Google Scholar 

  53. Bloomfield, M. et al. Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy. J. Pharm. Biomed. Anal. 76, 65–69 (2013).

    Google Scholar 

  54. Matousek, P. Inverse spatially offset Raman spectroscopy for deep spectroscopy of turbid media. Appl. Spectrosc. 60, 1341–1347 (2006).

    ADS  Google Scholar 

  55. Keller, M. D. et al. Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation. J. Biomed. Opt. 16, 077006 (2011).

    ADS  Google Scholar 

  56. Ma, J. & Ben-Amotz, D. Rapid micro-Raman imaging using fiber-bundle image compression. Appl. Spectrosc. 51, 1845–1848 (1997).

    ADS  Google Scholar 

  57. Liao, Z., Sinjab, F., Gibson, G., Padgett, M. & Notingher, I. DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples. Opt. Express 24, 12701 (2016).

    ADS  Google Scholar 

  58. Schulmerich, M. V., Dooley, K. A., Morris, M. D., Vanasse, T. M. & Goldstein, S. A. Transcutaneous fiber optic Raman spectroscopy of bone using annular illumination and a circular array of collection fibers. J. Biomed. Opt. 11, 060502 (2006).

    ADS  Google Scholar 

  59. Eliasson, C., Claybourn, M. & Matousek, P. Deep subsurface Raman spectroscopy of turbid media by a defocused collection system. Appl Spectrosc 61, 1123–1127 (2007).

    ADS  Google Scholar 

  60. Conti, C., Realini, M., Colombo, C. & Matousek, P. Comparison of key modalities of micro-scale spatially offset Raman spectroscopy. Analyst 140, 8127–8133 (2015).

    ADS  Google Scholar 

  61. Matousek, P. & Parker, A. W. Bulk Raman analysis of pharmaceutical tablets. Appl. Spectrosc. 60, 1353–1357 (2006). This paper is the first demonstration of TRS volumetric sensing capability.

    ADS  Google Scholar 

  62. Stone, N., Faulds, K., Graham, D. & Matousek, P. Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25 mm of mammalian tissue. Anal. Chem. 82, 3969–3973 (2010). This paper is the first conceptual demonstration of SESORS.

    Google Scholar 

  63. Stone, N. et al. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging — the next dimension. Chem. Sci. 2, 776 (2011). This paper is the first demonstration of SESORS imaging.

    Google Scholar 

  64. Sharma, B., Frontiera, R. R., Henry, A., Ringe, E. & Van Duyne, R. P. SERS: materials, applications, and the future surface enhanced Raman spectroscopy (SERS) is a powerful vibrational. Mater. Today 15, 16–25 (2012).

    Google Scholar 

  65. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977).

    Google Scholar 

  66. Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004).

    ADS  Google Scholar 

  67. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83 (2007).

    Google Scholar 

  68. Moore, T. J. et al. In vitro and in vivo SERS biosensing for disease diagnosis. Biosensors 8, 46 (2018).

    Google Scholar 

  69. Schlücker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chemie Int. Ed. 53, 4756–4795 (2014).

    Google Scholar 

  70. Gardner, B., Stone, N. & Matousek, P. Noninvasive simultaneous monitoring of pH and depth using surface-enhanced deep Raman spectroscopy. J. Raman Spectrosc. 51, 1078–1082 (2020). This paper is the first conceptual demonstration of SESORS to measure pH.

    ADS  Google Scholar 

  71. Laing, S., Gracie, K. & Faulds, K. Multiplex in vitro detection using SERS. Chem. Soc. Rev. 45, 1901–1918 (2016).

    Google Scholar 

  72. Conti, C., Colombo, C., Realini, M., Zerbi, G. & Matousek, P. Subsurface Raman analysis of thin painted layers. Appl. Spectrosc. 68, 686–691 (2014). This paper is the first conceptual demonstration of micro-SORS, a high-resolution variant of spatially offset Raman spectroscopy.

    ADS  Google Scholar 

  73. Matousek, P., Conti, C., Realini, M. & Colombo, C. Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials. Analyst 141, 731–739 (2016).

    ADS  Google Scholar 

  74. Buckley, K. et al. Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags. Analyst 141, 1678–1685 (2016).

    ADS  Google Scholar 

  75. Di, Z. et al. Spatially offset Raman microspectroscopy of highly scattering tissue: theory and experiment. J. Mod. Opt. 62, 97–101 (2015).

    ADS  Google Scholar 

  76. Conti, C. et al. Analytical capability of defocused µ-SORS in the chemical interrogation of thin turbid painted layers. Appl Spectrosc. 70, 156–161 (2016).

    ADS  Google Scholar 

  77. Gardner, B., Stone, N. & Matousek, P. Noninvasive determination of depth in transmission Raman spectroscopy in turbid media based on sample differential transmittance. Anal. Chem. 89, 9730–9733 (2017).

    Google Scholar 

  78. Widjaja, E. et al. Band-target entropy minimization (BTEM) applied to hyperspectral Raman image data. Appl. Spectrosc. 57, 1353–1362 (2003).

    ADS  Google Scholar 

  79. Churchwell, J. H. et al. Adaptive band target entropy minimization: optimization for the decomposition of spatially offset Raman spectra of bone. J Raman Spectrosc. 51, 66–78 (2020).

    ADS  Google Scholar 

  80. Chen, K., Massie, C. & Berger, A. J. Soft-tissue spectral subtraction improves transcutaneous Raman estimates of murine bone strength in vivo. J. Biophotonics 13, 1–11 (2020).

    Google Scholar 

  81. Matousek, P. et al. Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl. Spectrosc. 59, 1485–1492 (2005).

    ADS  Google Scholar 

  82. Keller, M. D., Wilson, R. H., Mycek, M.-A. & Mahadevan-Jansen, A. Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis. Appl. Spectrosc. 64, 607–614 (2010).

    ADS  Google Scholar 

  83. Rencher, A. C. Methods of multivariate analysis. Choice Rev. Online 33, 33-1586–33-1586 (1995).

    ADS  MathSciNet  Google Scholar 

  84. Griffen, J. A., Owen, A. W., Burley, J., Taresco, V. & Matousek, P. Rapid quantification of low level polymorph content in a solid dose form using transmission Raman spectroscopy. J. Pharm. Biomed. Anal. 128, 35–45 (2016).

    Google Scholar 

  85. Kwang, S. Y. & Frontiera, R. R. Spatially offset femtosecond stimulated Raman spectroscopy: observing exciton transport through a vibrational lens. J. Phys. Chem. Lett. 11, 4337–4344 (2020).

    Google Scholar 

  86. Samuel, A. Z., Yabumoto, S., Kawamura, K. & Iwata, K. Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy. Analyst 140, 1847–1851 (2015).

    ADS  Google Scholar 

  87. Shin, K. & Chung, H. Wide area coverage Raman spectroscopy for reliable quantitative analysis and its applications. Analyst 138, 3335–3346 (2013).

    ADS  Google Scholar 

  88. Paudel, A., Raijada, D. & Rantanen, J. Raman spectroscopy in pharmaceutical product design. Adv. Drug Deliv. Rev. 89, 3–20 (2015).

    Google Scholar 

  89. Kim, M., Chung, H. & Jung, Y. M. Accurate determination of polyethylene pellet density using transmission Raman spectroscopy. J. Raman Spectrosc. 42, 1967–1976 (2011).

    ADS  Google Scholar 

  90. Hooijschuur, J. H., Iping Petterson, I. E., Davies, G. R., Gooijer, C. & Ariese, F. Time resolved Raman spectroscopy for depth analysis of multi-layered mineral samples. J. Raman Spectrosc. 44, 1540–1547 (2013).

    ADS  Google Scholar 

  91. Verkaaik, M. F. C., Hooijschuur, J. H., Davies, G. R. & Ariese, F. Raman spectroscopic techniques for planetary exploration: detecting microorganisms through minerals. Astrobiology 15, 697–707 (2015).

    ADS  Google Scholar 

  92. Matthiae, M. & Kristensen, A. Hyperspectral spatially offset Raman spectroscopy in a microfluidic channel. Opt. Express 27, 3782 (2019).

    ADS  Google Scholar 

  93. Loeffen, P. W. et al. in Optics and Photonics for Counterterrorism and Crime Fighting. VII; Optical Materials in Defence Systems Technology VIII; and Quantum-Physics-based Information Security Vol. 8189 (International Society for Optics and Photonics, 2011).

  94. Eliasson, C. & Matousek, P. Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy. Anal. Chem. 79, 1696–1701 (2007).

    Google Scholar 

  95. Eliasson, C. & Matousek, P. RAMAN SPECTROSCOPY: spatial offset broadens applications for Raman spectroscopy. LaserFocusWorld https://www.laserfocusworld.com/test-measurement/test-measurement/article/16552969/raman-spectroscopy-spatial-offset-broadens-applications-for-raman-spectroscopy (2007).

  96. Johansson, J., Sparen, A., Svensson, O., Folestad, S. & Claybourn, M. Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules. Appl. Spectrosc. 61, 1211–1218 (2007).

    ADS  Google Scholar 

  97. Matousek, P. & Parker, A. W. Non-invasive probing of pharmaceutical capsules using transmission Raman spectroscopy. J. Raman Spectrosc. 38, 563–567 (2007).

    ADS  Google Scholar 

  98. Griffen, J. A., Owen, A. W., Andrews, D. & Matousek, P. Recent advances in pharmaceutical analysis using transmission Raman spectroscopy. Spectroscopy 32, 37–43 (2017).

    Google Scholar 

  99. FDA, Food and Drug Administration. CFR — Code of Federal Regulations Title 21 (FDA, 2018).

  100. Aina, A., Hargreaves, M. D., Matousek, P. & Burley, J. C. Transmission Raman spectroscopy as a tool for quantifying polymorphic content of pharmaceutical formulations. Analyst 135, 2328 (2010).

    ADS  Google Scholar 

  101. Song, S. W. et al. Hyperspectral Raman line mapping as an effective tool to monitor the coating thickness of pharmaceutical tablets. Anal. Chem. 91, 5810–5816 (2019).

    Google Scholar 

  102. Eliasson, C., Macleod, N. A. & Matousek, P. Noninvasive detection of concealed liquid explosives using Raman spectroscopy. Anal. Chem. 79, 8185–8189 (2007).

    Google Scholar 

  103. Stokes, R. J. et al. in Optics and Photonics for Counterterrorism, Crime Fighting and Defence XII vol. 9995 (International Society for Optics and Photonics, 2016).

  104. Zachhuber, B., Gasser, C., Chrysostom, E. T. H. & Lendl, B. Stand-off spatial offset Raman spectroscopy for the detection of concealed content in distant objects. Anal Chem 83, 9424–9438 (2011).

    Google Scholar 

  105. Cletus, B. et al. Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards. Anal. Bioanal. Chem. 403, 255–263 (2012).

    Google Scholar 

  106. R. J. Hopkins, S. H. P. & Shand, N. C. Short-wave infrared excited spatially offset Raman spectroscopy (SORS) for through-barrier detection. Analyst 137, 4408 (2012).

    ADS  Google Scholar 

  107. Lewis, I. R., Daniel, N. W. & Griffiths, P. R. Interpretation of Raman spectra of nitro-containing explosive materials. Part I: group frequency and structural class membership. Appl. Spectrosc. 51, 1854–1867 (1997).

    ADS  Google Scholar 

  108. Daniel, N. W., Lewis, I. R. & Griffiths, P. R. Interpretation of Raman spectra of nitro-containing explosive materials. Part II: the implementation of neural, fuzzy, and statistical models for unsupervised pattern recognition. Appl. Spectrosc. 51, 1868–1879 (1997).

    ADS  Google Scholar 

  109. Schulmerich, M. V. et al. in Biomedical Vibrational Spectroscopy III: Advances in Research and Industry (International Society for Optics and Photonics, 2006).

  110. Dooley, M., McLaren, J., Rose, F. R. A. J. & Notingher, I. Investigating the feasibility of spatially offset Raman spectroscopy for in-vivo monitoring of bone healing in rat calvarial defect models. J. Biophotonics 13, e202000190 (2020).

    Google Scholar 

  111. Stone, N. & Matousek, P. Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Res. 68, 4424–4430 (2008).

    Google Scholar 

  112. Stone, N., Baker, R., Rogers, K., Parker, A. W. & Matousek, P. Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst 132, 899–905 (2007).

    ADS  Google Scholar 

  113. Gardner, B., Matousek, P. & Stone, N. Subsurface chemically specific measurement of pH levels in biological tissues using combined surface-enhanced and deep Raman. Anal. Chem. 91, 10984–10987 (2019).

    Google Scholar 

  114. Keller, M. D., Majumder, S. K. & Mahadevan-Jansen, A. Spatially offset Raman spectroscopy of layered soft tissues. Opt. Lett. 34, 926–928 (2009).

    ADS  Google Scholar 

  115. Schulmerich, M. V., Finney, W. F., Fredricks, R. A. & Morris, M. D. Subsurface Raman spectroscopy and mapping using a globally illuminated non confocal fiber optic array probe in the presence of Raman photon migration. Appl Spectrosc. 60, 109 (2006).

    ADS  Google Scholar 

  116. Schulmerich, M. V. et al. Noninvasive Raman tomographic imaging of canine bone tissue. J. Biomed. Opt. 13, 020506 (2008).

    ADS  Google Scholar 

  117. Srinivasan, S. et al. Image-guided Raman spectroscopic recovery ofcanine cortical bone contrast in situ. Opt. Express 16, 12190 (2008).

    ADS  Google Scholar 

  118. Demers, J.-L. H., Esmonde-White, F. W. L., Esmonde-White, K. A., Morris, M. D. & Pogue, B. W. Next-generation Raman tomography instrument for non-invasive in vivo bone imaging. Biomed. Opt. Express 6, 793 (2015).

    Google Scholar 

  119. Demers, J.-L., Davis, S., Pogue, B. W. & Morris, M. D. in Biomedical Optics and 3-D Imaging, OSA Technical Digest (Optical Society of America, 2012).

  120. Jiang, S., Pogue, B. W., Laughney, A. M., Kogel, C. A. & Paulsen, K. D. Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging. Appl. Opt. 48, D130–D136 (2009).

    ADS  Google Scholar 

  121. Sil, S. & Umapathy, S. Raman spectroscopy explores molecular structural signatures of hidden materials in depth: universal multiple angle Raman spectroscopy. Sci. Rep. 4, 5308 (2015).

    Google Scholar 

  122. Gardner, B., Stone, N. & Matousek, P. Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy. Faraday Discuss. 187, 329–339 (2016). This paper is the first conceptual demonstration of T-SESORS, a variant of SESORS and TRS.

    ADS  Google Scholar 

  123. Gardner, B., Matousek, P. & Stone, N. Direct monitoring of light mediated hyperthermia induced within mammalian tissues using surface enhanced spatially offset Raman spectroscopy (T-SESORS). Analyst 144, 3552–3555 (2019).

    ADS  Google Scholar 

  124. Vardaki, M. Z. et al. Raman spectroscopy of stored red blood cell concentrate within sealed transfusion blood bags. Analyst 143, 6006–6013 (2018).

    ADS  Google Scholar 

  125. Vardaki, M. Z. & Kourkoumelis, N. Tissue phantoms for biomedical applications in Raman spectroscopy: a review. Biomed. Eng. Comput. Biol. 11, 1–15 (2020).

    Google Scholar 

  126. Nicolson, F. et al. Non-invasive in vivo imaging of cancer using surface-enhanced spatially offset Raman spectroscopy (SESORS). Theranostics 9, 5899–5913 (2019).

    Google Scholar 

  127. Ma, K. et al. In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83, 9146–9152 (2011).

    Google Scholar 

  128. Sharma, B., Ma, K., Glucksberg, M. R. & Van Duyne, R. P. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J. Am. Chem. Soc. 135, 17290–17293 (2013).

    Google Scholar 

  129. Moody, A. S., Baghernejad, P. C., Webb, K. R. & Sharma, B. Surface enhanced spatially offset Raman spectroscopy detection of neurochemicals through the skull. Anal. Chem. 89, 5688–5692 (2017).

    Google Scholar 

  130. Moody, A. S., Payne, T. D., Barth, B. A. & Sharma, B. Surface-enhanced spatially-offset Raman spectroscopy (SESORS) for detection of neurochemicals through the skull at physiologically relevant concentrations. Analyst 145, 1885–1893 (2020).

    ADS  Google Scholar 

  131. Qin, J., Chao, K. & Kim, M. S. Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest Biol. Technol. 71, 21–31 (2012).

    Google Scholar 

  132. Morey, R. et al. Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy. Anal. Bioanal. Chem. 412, 4585–4594 (2020).

    Google Scholar 

  133. Ellis, D. I. et al. Through-container, extremely low concentration detection of multiple chemical markers of counterfeit alcohol using a handheld SORS device. Sci. Rep. 7, 12082 (2017).

    ADS  Google Scholar 

  134. Conti, C. et al. Advances in Raman spectroscopy for the non-destructive subsurface analysis of artworks: micro-SORS. J. Cult. Herit. 43, 319–328 (2020).

    Google Scholar 

  135. Botteon, A. et al. Non-invasive characterisation of molecular diffusion of agent into turbid matrix using micro-SORS. Talanta 218, 121078 (2020).

    Google Scholar 

  136. Janssens, K., Dik, J., Cotte, M. & Susini, J. Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc. Chem. Res. 43, 814–825 (2010).

    Google Scholar 

  137. Tournié, A. et al. Ancient Greek text concealed on the back of unrolled papyrus revealed through shortwave-infrared hyperspectral imaging. Sci. Adv. 5, 1–9 (2019).

    Google Scholar 

  138. Brunetti, B. et al. Non-invasive investigations of paintings by portable instrumentation: the MOLAB experience. Top. Curr. Chem. 374, 1–35 (2016).

    Google Scholar 

  139. Realini, M., Conti, C., Botteon, A., Colombo, C. & Matousek, P. Development of a full micro-scale spatially offset Raman spectroscopy prototype as a portable analytical tool. Analyst 142, 351–355 (2017).

    ADS  Google Scholar 

  140. Botteon, A. et al. Non-invasive and in situ investigation of layers sequence in panel paintings by portable micro-spatially offset Raman spectroscopy. J. Raman Spectrosc. 51, 2016–2021 (2020).

    ADS  Google Scholar 

  141. Casadio, F., Daher, C. & Bellot-Gurlet, L. Raman spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top. Curr. Chem. 374, 62 (2016).

    Google Scholar 

  142. Stone, N., Kendall, C. & Barr, H. in Handbook of Vibrational Spectroscopy (ed. Diem, M.) 203–230 (Wiley, 2008).

  143. Isabelle, M. et al. Multi-centre Raman spectral mapping of oesophageal cancer tissues: a study to assess system transferability. Faraday Discuss. 187, 87–103 (2016).

    ADS  Google Scholar 

  144. Harvey, C. E. et al. Looking inside catalyst extrudates with time-resolved surface-enhanced Raman spectroscopy (TR-SERS). Appl. Spectrosc. 66, 1179–1185 (2012).

    ADS  Google Scholar 

  145. Corden, C., Matousek, P., Conti, C. & Notingher, I. Sub-surface molecular analysis and imaging in turbid media using time-gated Raman spectral multiplexing. Appl. Spectrosc. 75, 156–167 (2020).

    ADS  Google Scholar 

  146. Kekkonen, J., Nissinen, J. & Nissinen, I. Depth analysis of semi-transparent media by a time-correlated CMOS SPAD line sensor-based depth-resolving Raman spectrometer. IEEE Sens. J. 19, 6711–6720 (2019).

    ADS  Google Scholar 

  147. Bersani, D., Conti, C., Matousek, P., Pozzi, F. & Vandenabeele, P. Methodological evolutions of Raman spectroscopy in art and archaeology. Anal. Methods 8, 8395–8409 (2016).

    Google Scholar 

  148. Conti, C., Botteon, A., Colombo, C., Realini, M. & Matousek, P. Investigation of heterogeneous painted systems by micro-spatially offset Raman spectroscopy. Anal. Chem. 89, 11476–11483 (2017).

    Google Scholar 

  149. Botteon, A. et al. Exploring street art paintings by microspatially offset Raman spectroscopy. J. Raman Spectrosc. 49, 1652–1659 (2018).

    ADS  Google Scholar 

  150. Barnett, P. D. & Angel, S. M. Miniature spatial heterodyne Raman spectrometer with a cell phone camera detector. Appl. Spectrosc. 71, 988–995 (2017).

    ADS  Google Scholar 

  151. Kiefer, J. Transmission Raman spectroscopy for pharmaceutical analysis. American Pharmaceutical Review https://www.americanpharmaceuticalreview.com/Featured-Articles/358425-Transmission-Raman-Spectroscopy-for-Pharmaceutical-Analysis/ (2019).

  152. Loeffen, P. W. et al. in Optics and Photonics for Counterterrorism, Crime Fighting, and Defence XII (eds Burgess, D. et al.) 12 (SPIE, 2016).

  153. Waldron, A., Allen, A., Colón, A., Carter, J. C. & Angel, S. M. A monolithic spatial heterodyne Raman spectrometer: initial tests. Appl. Spectrosc. 75, 57–69 (2021).

    ADS  Google Scholar 

  154. Griffen, J. A., Owen, A. W. & Matousek, P. Development of transmission Raman spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose. Analyst 140, 107–112 (2015).

    ADS  Google Scholar 

  155. Loeffen, P. W. et al. in Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE). Sensing XII Vol. 8018, 80181E (International Society for Optics and Photonics, 2011).

  156. Thomas, K. J., Sheeba, M., Nampoori, V. P. N., Vallabhan, C. P. G. & Radhakrishnan, P. Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser. J. Opt. A Pure Appl. Opt. 10, 1–6 (2008).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant EP/R020965/1.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (N.S.); Experimentation (P.M. and S.M.); Results (P.M. and S.M.); Applications (C.C.); Reproducibility and data deposition (N.S.); Limitations and optimizations (P.M.); Outlook (N.S); Oversight of Primer (P.M.).

Corresponding authors

Correspondence to Claudia Conti, Nick Stone or Pavel Matousek.

Ethics declarations

Competing interests

The authors declare that they are bound by confidentiality agreements that prevent them from disclosing their competing interests in this work.

Additional information

Peer review information

Nature Reviews Methods Primers thanks E. Kiriakous and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bruker OPUS software: https://www.bruker.com/products/infrared-near-infrared-and-raman-spectroscopy/opus-spectroscopy-software.html

ChemSpider database: http://www.chemspider.com/Spectra.aspx?st=R

CytoSpec: http://www.cytospec.com/ftir.php

Gaussian software package: https://gaussian.com/

GRAMS/AI: https://www.thermofisher.com/order/catalog/product/INF-15000?SID=srch-srp-INF-15000#/INF-15000?SID=srch-srp-INF-15000

KnowItAll Raman Spectral Database Collection: https://sciencesolutions.wiley.com/solutions/technique/raman/knowitall-raman-collection/

Matlab: https://www.mathworks.com/products/matlab.html

Origin: https://www.originlab.com/

RRUFF: https://rruff.info/

Solo: https://eigenvector.com/software/solo/

WiRE: https://www.renishaw.com/en/raman-software--9450

Glossary

Rayleigh scattering

The elastic scattering of electromagnetic radiation by particles smaller than the wavelength of the radiation.

Polarizability

The degree to which a molecular dipole changes in response to an external electric field.

Raman scattering

The inelastic scattering of photons, where the frequency of the scattered photon is different from that of the incident photon.

Photon shot noise

Fluctuations of the detected number of photons, caused by the inherent particle-like properties of photons.

Lambert’s cosine law

A law describing the cosine dependence of light emission intensity with respect to the angle of incidence from the surface normal.

Solid angle

A measure of the amount of the field of view that an object occupies from a particular point.

Acceptance angle

The maximum incidence angle of an optical ray that is transmitted to the spectrograph, measured from the optical axis of the spectrograph.

Cosmic rays

High-energy protons and atomic nuclei that move through space at nearly the speed of light.

Surface plasmon resonance

A resonant oscillation of nanoparticle conduction electrons induced by incident light; its spectral properties are dependent on nanoparticle size, shape and metal type.

Monte Carlo simulations

Numerical algorithms that rely on the random sampling of events.

Imaging phantoms

Specially prepared samples that mimic the properties of real biological tissue for the purposes of optical imaging.

Polymorphs

Identical chemicals of different crystalline forms.

Etaloning

Wave-like modulation of charge-coupled device (CCD) sensitivity across the sensor caused by light interference and associated with back-illuminated CCDs.

Read-out noise

Noise induced by charge digitization circuitry, imprinted on the signal when it is read.

Thermal noise

Noise induced by thermal fluctuations of charge carriers within a detection element.

Instrument response function

In the context of spatially offset Raman spectroscopy, a combined spectrograph–detector spectral intensity profile in response to illumination by a spectrally uniform light source.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosca, S., Conti, C., Stone, N. et al. Spatially offset Raman spectroscopy. Nat Rev Methods Primers 1, 21 (2021). https://doi.org/10.1038/s43586-021-00019-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-021-00019-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing