Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Deconstructing plate tectonic reconstructions

Abstract

The evolving mosaic of tectonic plates across the surface of the Earth sets boundary conditions for the evolution of biotic and abiotic processes and helps shape the dynamics of its interior. Reconstructing plate tectonics back through time allows scientists from a range of disciplines (such as palaeobiology, palaeoclimate, geodynamics and seismology) to investigate Earth evolution through these spatiotemporal dimensions. However, the variety and complexity of plate reconstructions can lead to some of their limitations being overlooked. In this Technical Review, we discuss the domain-specific knowledge underpinning modern quantitative plate reconstructions and convey a set of principles on how to use (but not abuse) the software or results. Open-source plate tectonic reconstruction software, like GPlates, has led to a major shift in working practices, handing non-specialists the tools to develop and integrate reconstructions based on their own datasets and expertise. However, there is no ‘one-size-fits-all’ and users need to understand what data and underlying assumptions go into making different, sometimes competing reconstruction models. It is therefore essential to consider the many ways reconstructions simplify reality when interpreting them to avoid circular reasoning. Although many aspects of deep-time reconstructions remain unresolved, future work on intercomparisons between models and uncertainty quantification is an essential pathway towards next-generation plate reconstructions.

Key points

  • Plate tectonic reconstructions have evolved from simple, rigid reconstructions to ones that incorporate the time-dependent evolution of plates and their boundaries, deformation and/or the history of subduction from seismic tomography.

  • Reconstructions can be powerfully predictive for a wide range of disciplines beyond tectonics, including palaeobiology, palaeoclimate, geodynamics and seismology.

  • With the advent of community-driven, open-source software and tools, plate models have become accessible and practicable to the wider geosciences community.

  • With this accessibility comes a responsibility for specialists and non-specialists alike to understand how these plate models are built, their weaknesses and pitfalls and how they can be used effectively to ensure correct inferences are made.

  • When reconstructing the tectonic plates of the Earth, there is no ‘one-size-fits-all’. Different data types and techniques are more applicable for different time periods, resolutions and purposes, for example, palaeomagnetics for pre-Pangea time periods.

  • Important areas of ongoing research include the quantification of uncertainty, incorporation of machine learning techniques and linking reconstructions to physics-based deep Earth models and surface (and/or biogeochemical) models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Features and data types used in plate reconstructions.
Fig. 2: Data availability through time.
Fig. 3: Plate tectonic reconstruction types.
Fig. 4: Regional example showcasing latest advances in plate tectonic modelling.
Fig. 5: Plate tectonic modelling applications.
Fig. 6: Uncertainty demonstration.

Similar content being viewed by others

Data availability

GPlates is open-source software and can be downloaded at https://www.gplates.org/. All data and plate models shown in the figures are publicly available and can be found in the publications quoted in the text. Python workflows to create the figures can be found at https://zenodo.org/record/7634068.

References

  1. Le Pichon, X. Fifty years of plate tectonics: afterthoughts of a witness. Tectonics 38, 2919–2933 (2019).

    Article  Google Scholar 

  2. Le Pichon, X. Sea-floor spreading and continental drift. J. Geophys. Res. 73, 3661–3697 (1968).

    Article  Google Scholar 

  3. Morgan, W. J. Rises, trenches, great faults, and crustal blocks. J. Geophys. Res. 73, 1959–1982 (1968).

    Article  Google Scholar 

  4. McKenzie, D. P. & Parker, R. L. The North Pacific: an example of tectonics on a sphere. Nature 216, 1276–1280 (1967).

    Article  Google Scholar 

  5. Scotese, C. R., Gahagan, L. M. & Larson, R. L. Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics 155, 27–48 (1988).

    Article  Google Scholar 

  6. Schettino, A. & Scotese, C. R. Apparent polar wander paths for the major continents (200 Ma to the present day): a palaeomagnetic reference frame for global plate tectonic reconstructions. Geophys. J. Int. 163, 727–759 (2005).

    Article  Google Scholar 

  7. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  8. Li, Z.-X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  9. Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: toward a unified model. Rev. Geophys. https://doi.org/10.1029/2007RG000227 (2008). Reviews palaeomagnetic and mantle reference frames and the construction of hybrid models combining different types of observations.

    Article  Google Scholar 

  10. Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019). The first global deforming plate model within a continuously closing plate topology network.

    Article  Google Scholar 

  11. Schettino, A. Computer-aided paleogeographic reconstructions. Comput. Geosci. 24, 259–267 (1998).

    Article  Google Scholar 

  12. Torsvik, T. H. & Smethurst, M. A. Plate tectonic modelling: virtual reality with GMAP. Comput. Geosci. 25, 395–402 (1999).

    Article  Google Scholar 

  13. Cogné, J. PaleoMac: a MacintoshTM application for treating paleomagnetic data and making plate reconstructions. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001GC000227 (2003).

    Article  Google Scholar 

  14. Boyden, J. A. et al. Next-generation plate-tectonic reconstructions using GPlates. in Geoinformatics 95–114 (Cambridge Univ. Press, 2011).

  15. Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).

    Article  Google Scholar 

  16. Torsvik, T. H. et al. Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl Acad. Sci. USA 111, 8735–8740 (2014).

    Article  Google Scholar 

  17. Flament, N., Bodur, Ö. F., Williams, S. E. & Merdith, A. S. Assembly of the basal mantle structure beneath Africa. Nature 603, 846–851 (2022).

    Article  Google Scholar 

  18. Mao, W. & Zhong, S. Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nat. Geosci. 11, 876–881 (2018).

    Article  Google Scholar 

  19. McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Article  Google Scholar 

  20. Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).

    Article  Google Scholar 

  21. Dannberg, J. & Gassmöller, R. Chemical trends in ocean islands explained by plume–slab interaction. Proc. Natl Acad. Sci. USA 115, 4351–4356 (2018).

    Article  Google Scholar 

  22. Loyd, S. J., Becker, T. W., Conrad, C. P., Lithgow-Bertelloni, C. & Corsetti, F. A. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth’s thermal evolution. Proc. Natl Acad. Sci. USA 104, 14266–14271 (2007).

    Article  Google Scholar 

  23. Goddéris, Y. et al. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nat. Geosci. 10, 382–386 (2017).

    Article  Google Scholar 

  24. Mills, B. J. W., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021). Setting the framework for next-generation models of biogeochemistry and climate.

    Article  Google Scholar 

  25. Leprieur, F. et al. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 11461 (2016).

    Article  Google Scholar 

  26. Cermeño, P. et al. Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots. Nature 607, 507–511 (2022).

    Article  Google Scholar 

  27. Rojas, A., Calatayud, J., Kowalewski, M., Neuman, M. & Rosvall, M. A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions. Commun. Biol. 4, 309 (2021).

    Article  Google Scholar 

  28. Lawley, C. J. et al. Data-driven prospectivity modelling of sediment-hosted Zn–Pb mineral systems and their critical raw materials. Ore Geol. Rev. 141, 104635 (2022).

    Article  Google Scholar 

  29. Pehrsson, S. J., Eglington, B. M., Evans, D. A., Huston, D. & Reddy, S. M. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. Geol. Soc. Lond. Spec. Publ. 424, 83–94 (2016).

    Article  Google Scholar 

  30. Diaz-Rodriguez, J., Müller, R. D. & Chandra, R. Predicting the emplacement of Cordilleran porphyry copper systems using a spatio-temporal machine learning model. Ore Geol. Rev. 137, 104300 (2021).

    Article  Google Scholar 

  31. Liu, H., Gurnis, M., Leng, W., Jia, Z. & Zhan, Z. Tonga slab morphology and stress variations controlled by a Relic slab: implications for deep earthquakes in the Tonga-Fiji region. Geophys. Res. Lett. 48, e2020GL091331 (2021).

    Google Scholar 

  32. Cooper, G. F. et al. Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature 582, 525–529 (2020).

    Article  Google Scholar 

  33. Schoenbohm, L. M. & McMillan, M. Worldbuilding from tectonic first principles: integrating and challenging undergraduate knowledge through a course project. J. Geosci. Educ. 70, 56–72 (2022).

    Article  Google Scholar 

  34. Scotese, C. R. & Baker, D. W. Continental drift reconstructions and animation. J. Geol. Educ. 23, 167–171 (1975).

    Google Scholar 

  35. Wegener, A. Die Entstehung der Kontinente und Ozeane [The Origin of Continents and Oceans] (Vieweg Braunschweig, 1915).

  36. Swanson-Hysell, N. L., Maloof, A. C., Weiss, B. P. & Evans, D. A. No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts. Nat. Geosci. 2, 713–717 (2009).

    Article  Google Scholar 

  37. Evans, D. A. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444, 51–55 (2006).

    Article  Google Scholar 

  38. Pisarevsky, S. A., Li, Z. X., Tetley, M. G., Liu, Y. & Beardmore, J. P. An updated internet-based Global Paleomagnetic Database. Earth-Sci. Rev. https://doi.org/10.1016/j.earscirev.2022.104258 (2022).

    Article  Google Scholar 

  39. Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev. 114, 325–368 (2012).

    Article  Google Scholar 

  40. Evans, D. A. et al. An expanding list of reliable paleomagnetic poles for Precambrian tectonic reconstructions. in Ancient Supercontinents and the Paleogeography of Earth 605–639 (Elsevier, 2021).

  41. Vine, F. J. & Matthews, D. H. Magnetic anomalies over oceanic ridges. Nature 199, 947–949 (1963).

    Article  Google Scholar 

  42. Wilson, J. T. A new class of faults and their bearing on continental drift. Nature 207, 343–347 (1965).

    Article  Google Scholar 

  43. Seton, M. et al. Community infrastructure and repository for marine magnetic identifications. Geochem. Geophys. Geosyst. 15, 1629–1641 (2014).

    Article  Google Scholar 

  44. Matthews, K. J., Müller, R. D., Wessel, P. & Whittaker, J. M. The tectonic fabric of the ocean basins. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2011JB008413 (2011).

    Article  Google Scholar 

  45. Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65–67 (2014).

    Article  Google Scholar 

  46. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  47. Wilson, J. T. A possible origin of the Hawaiian Islands. Can. J. Phys. 41, 863–870 (1963).

    Article  Google Scholar 

  48. Davies, D. R., Rawlinson, N., Iaffaldano, G. & Campbell, I. H. Lithospheric controls on magma composition along Earth’s longest continental hotspot track. Nature 525, 511–514 (2015).

    Article  Google Scholar 

  49. Kinney, S. T. et al. Zircon U-Pb geochronology constrains continental expression of great meteor hotspot magmatism. Geophys. Res. Lett. 48, e2020GL091390 (2021).

    Article  Google Scholar 

  50. Konrad, K. et al. On the relative motions of long-lived Pacific mantle plumes. Nat. Commun. 9, 854 (2018).

    Article  Google Scholar 

  51. Arnould, M., Ganne, J., Coltice, N. & Feng, X. Northward drift of the Azores plume in the Earth’s mantle. Nat. Commun. 10, 3235 (2019).

    Article  Google Scholar 

  52. Koppers, A. A. P. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).

    Article  Google Scholar 

  53. Black, B. A., Karlstrom, L. & Mather, T. A. The life cycle of large igneous provinces. Nat. Rev. Earth Environ. 2, 840–857 (2021).

    Article  Google Scholar 

  54. Burke, K. & Torsvik, T. H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet. Sci. Lett. 227, 531–538 (2004).

    Article  Google Scholar 

  55. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).

    Article  Google Scholar 

  56. Ernst, R. & Bleeker, W. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Can. J. Earth Sci. 47, 695–739 (2010).

    Article  Google Scholar 

  57. Johansson, L., Zahirovic, S. & Müller, R. D. The interplay between the eruption and weathering of large igneous provinces and the deep-time carbon cycle. Geophys. Res. Lett. 45, 5380–5389 (2018).

    Article  Google Scholar 

  58. Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).

    Article  Google Scholar 

  59. Ernst, R. E. & Youbi, N. How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 30–52 (2017).

    Article  Google Scholar 

  60. Collins, A. S. & Robertson, A. H. Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. J. Geol. Soc. 155, 759–772 (1998).

    Article  Google Scholar 

  61. van Hinsbergen, D. J. J. & Schouten, T. L. A. Deciphering paleogeography from orogenic architecture: constructing orogens in a future supercontinent as thought experiment. Am. J. Sci. 321, 955–1031 (2021).

    Article  Google Scholar 

  62. Von Huene, R. & Culotta, R. Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics 160, 75–90 (1989).

    Article  Google Scholar 

  63. von Huene, R. & Ranero, C. R. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J. Geophys. Res. Solid. Earth https://doi.org/10.1029/2001JB001569 (2003).

    Article  Google Scholar 

  64. Straub, S. M., Gómez-Tuena, A. & Vannucchi, P. Subduction erosion and arc volcanism. Nat. Rev. Earth Environ. 1, 574–589 (2020).

    Article  Google Scholar 

  65. Aoki, K. et al. Tectonic erosion in a Pacific-type orogen: detrital zircon response to Cretaceous tectonics in Japan. Geology 40, 1087–1090 (2012).

    Article  Google Scholar 

  66. Lloyd, J. C. et al. Neoproterozoic geochronology and provenance of the Adelaide Superbasin. Precambrian Res. 350, 105849 (2020).

    Article  Google Scholar 

  67. Armistead, S. E. et al. Evolving marginal terranes during Neoproterozoic supercontinent reorganization: constraints from the Bemarivo Domain in northern Madagascar. Tectonics 38, 2019–2035 (2019).

    Article  Google Scholar 

  68. Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).

    Article  Google Scholar 

  69. Tang, M., Ji, W.-Q., Chu, X., Wu, A. & Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76–80 (2021).

    Article  Google Scholar 

  70. Tang, M., Lee, C.-T. A., Ji, W.-Q., Wang, R. & Costin, G. Crustal thickening and endogenic oxidation of magmatic sulfur. Sci. Adv. 6, eaba6342 (2020).

    Article  Google Scholar 

  71. Ganade, C. E. et al. Magmatic flare-up causes crustal thickening at the transition from subduction to continental collision. Commun. Earth Environ. 2, 41 (2021).

    Article  Google Scholar 

  72. Handley, H. K., Macpherson, C. G., Davidson, J. P., Berlo, K. & Lowry, D. Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen volcanic complex. J. Petrol. 48, 1155–1183 (2007).

    Article  Google Scholar 

  73. Turner, S. & Foden, J. U, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component. Contrib. Mineral. Petrol. 142, 43–57 (2001).

    Article  Google Scholar 

  74. Brendan Murphy, J. & Damian Nance, R. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology 19, 469 (1991).

    Article  Google Scholar 

  75. Collins, W. J., Belousova, E. A., Kemp, A. I. S. & Murphy, J. B. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nat. Geosci. 4, 333–337 (2011).

    Article  Google Scholar 

  76. Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc activity since 750 Ma: a global compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).

    Article  Google Scholar 

  77. Cao, W. et al. Palaeolatitudinal distribution of lithologic indicators of climate in a palaeogeographic framework. Geol. Mag. 156, 331–354 (2019).

    Article  Google Scholar 

  78. Boucot, A. J., Xu, C., Scotese, C. R. & Morley, R. J. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate, Vol. 11 (SEPM (Society for Sedimentary Geology), 2013).

  79. Gard, M., Hasterok, D. & Halpin, J. A. Global whole-rock geochemical database compilation. Earth Syst. Sci. Data 11, 1553–1566 (2019).

    Article  Google Scholar 

  80. Lehnert, K., Su, Y., Langmuir, C. H., Sarbas, B. & Nohl, U. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. https://doi.org/10.1029/1999GC000026 (2000).

    Article  Google Scholar 

  81. Brown, M. & Johnson, T. Secular change in metamorphism and the onset of global plate tectonics. Am. Mineral. 103, 181–196 (2018).

    Article  Google Scholar 

  82. Puetz, S. J., Spencer, C. J. & Ganade, C. E. Analyses from a validated global UPb detrital zircon database: enhanced methods for filtering discordant UPb zircon analyses and optimizing crystallization age estimates. Earth-Sci. Rev. 220, 103745 (2021).

    Article  Google Scholar 

  83. Hoggard, M. J. et al. Global distribution of sediment-hosted metals controlled by craton edge stability. Nat. Geosci. 13, 504–510 (2020).

    Article  Google Scholar 

  84. Kreemer, C., Blewitt, G. & Klein, E. C. A geodetic plate motion and global strain rate model. Geochem. Geophys. Geosyst. 15, 3849–3889 (2014).

    Article  Google Scholar 

  85. Hasterok, D. et al. New maps of global geologic provinces and tectonic plates. Earth-Sci. Rev. 231, 104069 (2022).

    Article  Google Scholar 

  86. McQuarrie, N. & Wernicke, B. P. An animated tectonic reconstruction of southwestern North America since 36 Ma. Geosphere 1, 147–172 (2005).

    Article  Google Scholar 

  87. Arriagada, C., Roperch, P., Mpodozis, C. & Cobbold, P. R. Paleogene building of the Bolivian Orocline: tectonic restoration of the central Andes in 2-D map view. Tectonics https://doi.org/10.1029/2008TC002269 (2008).

    Article  Google Scholar 

  88. Liu, S., Gurnis, M., Ma, P. & Zhang, B. Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma. Earth-Sci. Rev. 175, 114–142 (2017).

    Article  Google Scholar 

  89. Replumaz, A. & Tapponnier, P. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2001JB000661 (2003).

    Article  Google Scholar 

  90. Brune, S., Williams, S. E., Butterworth, N. P. & Müller, R. D. Abrupt plate accelerations shape rifted continental margins. Nature 536, 201–204 (2016).

    Article  Google Scholar 

  91. Sutra, E., Manatschal, G., Mohn, G. & Unternehr, P. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem. Geophys. Geosyst. 14, 2575–2597 (2013).

    Article  Google Scholar 

  92. Le Breton, E., Cobbold, P. R., Dauteuil, O. & Lewis, G. Variations in amount and direction of seafloor spreading along the northeast Atlantic Ocean and resulting deformation of the continental margin of northwest Europe. Tectonics https://doi.org/10.1029/2011TC003087 (2012).

    Article  Google Scholar 

  93. Granot, R., Cande, S. C., Stock, J. M. & Damaske, D. Revised Eocene–Oligocene kinematics for the West Antarctic rift system. Geophys. Res. Lett. 40, 279–284 (2013).

    Article  Google Scholar 

  94. Williams, S. E., Whittaker, J. M., Halpin, J. A. & Müller, R. D. Australian–Antarctic breakup and seafloor spreading: balancing geological and geophysical constraints. Earth-Sci. Rev. 188, 41–58 (2019).

    Article  Google Scholar 

  95. Hosseini, K. et al. SubMachine: web-based tools for exploring seismic tomography and other models of Earth’s deep interior. Geochem. Geophys. Geosyst. 19, 1464–1483 (2018).

    Article  Google Scholar 

  96. Incorporated Research Institutions for Seismology. Data Services Products: EMC https://doi.org/10.17611/DP/EMC.1 (2011).

  97. Woodhouse, J. H. & Dziewonski, A. M. Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms. J. Geophys. Res. Solid Earth 89, 5953–5986 (1984).

    Article  Google Scholar 

  98. Van der Voo, R., Spakman, W. & Bijwaard, H. Tethyan subducted slabs under India. Earth Planet. Sci. Lett. 171, 7–20 (1999).

    Article  Google Scholar 

  99. Van der Meer, D. G., Van Hinsbergen, D. J. & Spakman, W. Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723, 309–448 (2018).

    Article  Google Scholar 

  100. Hafkenscheid, E., Wortel, M. & Spakman, W. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res. Solid Earth 111, B08401 (2006).

    Article  Google Scholar 

  101. Replumaz, A., Karason, H., van der Hilst, R. D., Besse, J. & Tapponnier, P. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth Planet. Sci. Lett. 221, 103–115 (2004).

    Article  Google Scholar 

  102. Schmid, C., Goes, S., Van der Lee, S. & Giardini, D. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet. Sci. Lett. 204, 17–32 (2002).

    Article  Google Scholar 

  103. Van Der Meer, D. G., Spakman, W., Van Hinsbergen, D. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3, 36–40 (2010).

    Article  Google Scholar 

  104. Van Hinsbergen, D. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).

    Article  Google Scholar 

  105. Domeier, M. et al. Intraoceanic subduction spanned the Pacific in the Late Cretaceous–Paleocene. Sci. Adv. 3, eaao2303 (2017).

    Article  Google Scholar 

  106. Shephard, G., Trønnes, R., Spakman, W., Panet, I. & Gaina, C. Evidence for slab material under Greenland and links to Cretaceous High Arctic magmatism. Geophys. Res. Lett. 43, 3717–3726 (2016).

    Article  Google Scholar 

  107. Sigloch, K. & Mihalynuk, M. G. Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature 496, 50–56 (2013).

    Article  Google Scholar 

  108. Sigloch, K. & Mihalynuk, M. G. Mantle and geological evidence for a Late Jurassic–Cretaceous suture spanning North America. GSA Bull. 129, 1489–1520 (2017).

    Google Scholar 

  109. Wu, J., Suppe, J., Lu, R. & Kanda, R. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. J. Geophys. Res. Solid. Earth 121, 4670–4741 (2016).

    Article  Google Scholar 

  110. Chen, Y.-W., Wu, J. & Suppe, J. Southward propagation of Nazca subduction along the Andes. Nature 565, 441–447 (2019).

    Article  Google Scholar 

  111. Zahirovic, S. et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Sci. Rev. 162, 293–337 (2016).

    Article  Google Scholar 

  112. Braz, C., Seton, M., Flament, N. & Müller, R. D. Geodynamic reconstruction of an accreted Cretaceous back-arc basin in the Northern Andes. J. Geodyn. 121, 115–132 (2018).

    Article  Google Scholar 

  113. Clennett, E. J. et al. A quantitative tomotectonic plate reconstruction of western North America and the eastern Pacific basin. Geochem. Geophys. Geosyst. 21, e2020GC009117 (2020).

    Article  Google Scholar 

  114. Fuston, S. & Wu, J. Raising the resurrection plate from an unfolded-slab plate tectonic reconstruction of northwestern North America since early Cenozoic time. GSA Bull. 133, 1128–1140 (2021).

    Article  Google Scholar 

  115. Tetley, M. G., Williams, S. E., Gurnis, M., Flament, N. & Müller, R. D. Constraining absolute plate motions since the Triassic. J. Geophys. Res. Solid. Earth 124, 7231–7258 (2019).

    Article  Google Scholar 

  116. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2011JB009072 (2012).

    Article  Google Scholar 

  117. O’Neill, C., Müller, D. & Steinberger, B. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000784 (2005).

    Article  Google Scholar 

  118. Steinberger, B. & Antretter, M. Conduit diameter and buoyant rising speed of mantle plumes: implications for the motion of hot spots and shape of plume conduits. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2006GC001409 (2006).

    Article  Google Scholar 

  119. Merdith, A. S., Williams, S. E., Müller, R. D. & Collins, A. S. Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Res. 299, 132–150 (2017).

    Article  Google Scholar 

  120. Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    Google Scholar 

  121. Engebretson, D. C., Cox, A. & Gordon, R. G. Relative motions between oceanic and continental plates in the Pacific basin (GSA Special Papers, 1985). Ground-breaking study that considered plate boundaries and velocities in inferring past configurations of the Pacific basin.

  122. Stampfli, G. M. & Borel, G. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 196, 17–33 (2002).

    Article  Google Scholar 

  123. Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2009JB006896 (2010).

    Article  Google Scholar 

  124. Gurnis, M. et al. Plate tectonic reconstructions with continuously closing plates. Comput. Geosci. 38, 35–42 (2012). Introduced the concept of plate-focused reconstructions and paved the way for open-access models for geodynamics.

    Article  Google Scholar 

  125. Domeier, M. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res. 36, 275–295 (2016).

    Article  Google Scholar 

  126. Domeier, M. & Torsvik, T. H. Plate tectonics in the Late Paleozoic. Geosci. Front. 5, 303–350 (2014).

    Article  Google Scholar 

  127. Matthews, K. J. et al. Global plate boundary evolution and kinematics since the Late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).

    Article  Google Scholar 

  128. Merdith, A. S. et al. Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth-Sci. Rev. 214, 103477 (2021). The first billion year plate reconstruction model.

    Article  Google Scholar 

  129. Boschman, L. M., van Hinsbergen, D. J., Torsvik, T. H., Spakman, W. & Pindell, J. L. Kinematic reconstruction of the Caribbean region since the early Jurassic. Earth-Sci. Rev. 138, 102–136 (2014).

    Article  Google Scholar 

  130. Collins, A. S., Blades, M. L., Merdith, A. S. & Foden, J. D. Closure of the Proterozoic Mozambique Ocean was instigated by a late Tonian plate reorganization event. Commun. Earth Environ. 2, 1–7 (2021).

    Article  Google Scholar 

  131. Montes, C. et al. Continental margin response to multiple arc-continent collisions: the northern Andes–Caribbean margin. Earth-Sci. Rev. 198, 102903 (2019).

    Article  Google Scholar 

  132. Van Hinsbergen, D. J. et al. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 81, 79–229 (2020).

    Article  Google Scholar 

  133. Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016).

    Article  Google Scholar 

  134. Thatcher, W. How the continents deform: the evidence from tectonic geodesy. Annu. Rev. Earth Planet. Sci. 37, 237–262 (2009).

    Article  Google Scholar 

  135. Unternehr, P., Curie, D., Olivet, J., Goslin, J. & Beuzart, P. South Atlantic fits and intraplate boundaries in Africa and South America. Tectonophysics 155, 169–179 (1988).

    Article  Google Scholar 

  136. Heine, C., Zoethout, J. & Müller, R. D. Kinematics of the South Atlantic rift. Solid Earth 4, 215–253 (2013).

    Article  Google Scholar 

  137. Gurnis, M. et al. Global tectonic reconstructions with continuously deforming and evolving rigid plates. Comput. Geosci. 116, 32–41 (2018).

    Article  Google Scholar 

  138. King, M. T., Welford, J. K., Cadenas, P. & Tugend, J. Investigating the plate kinematics of the Bay of Biscay using deformable plate tectonic models. Tectonics 40, e2020TC006467 (2021).

    Article  Google Scholar 

  139. Steinberger, B., Torsvik, T. H. & Becker, T. W. Subduction to the lower mantle — a comparison between geodynamic and tomographic models. Solid Earth 3, 415–432 (2012).

    Article  Google Scholar 

  140. Cerpa, N. G. et al. The effect of a weak asthenospheric layer on surface kinematics, subduction dynamics and slab morphology in the lower mantle. JGR Solid Earth 127, e2022JB024494 (2022).

    Article  Google Scholar 

  141. Mohammadzaheri, A., Sigloch, K., Hosseini, K. & Mihalynuk, M. G. Subducted lithosphere under South America from multifrequency P wave tomography. J. Geophys. Res. Solid. Earth 126, e2020JB020704 (2021).

    Article  Google Scholar 

  142. Domeier, M., Doubrovine, P. V., Torsvik, T. H., Spakman, W. & Bull, A. L. Global correlation of lower mantle structure and past subduction. Geophys. Res. Lett. 43, 4945–4953 (2016).

    Article  Google Scholar 

  143. Hosseini, K. et al. Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophys. J. Int. 220, 96–141 (2020).

    Article  Google Scholar 

  144. van de Lagemaat, S. H. A., van Hinsbergen, D. J. J., Boschman, L. M., Kamp, P. J. J. & Spakman, W. Southwest Pacific Absolute plate kinematic reconstruction reveals major Cenozoic Tonga-Kermadec slab dragging. Tectonics 37, 2647–2674 (2018).

    Article  Google Scholar 

  145. Parsons, A. J., Sigloch, K. & Hosseini, K. Australian plate subduction is responsible for Northward Motion of the India-Asia Collision Zone and 1,000 km lateral migration of the Indian Slab. Geophys. Res. Lett. 48, e2021GL094904 (2021).

    Article  Google Scholar 

  146. Replumaz, A., Negredo, A. M., Guillot, S. & Villaseñor, A. Multiple episodes of continental subduction during India/Asia convergence: insight from seismic tomography and tectonic reconstruction. Tectonophysics 483, 125–134 (2010).

    Article  Google Scholar 

  147. Qayyum, A. et al. Subduction and slab detachment under moving trenches during ongoing India-Asia Convergence. Geochem. Geophys. Geosyst. 23, e2022GC010336 (2022).

    Article  Google Scholar 

  148. Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34 (1990).

    Article  Google Scholar 

  149. Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Influence of Late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649–653 (1988).

    Article  Google Scholar 

  150. Ramstein, G. et al. Some illustrations of large tectonically driven climate changes in earth history. Tectonics 38, 4454–4464 (2019).

    Article  Google Scholar 

  151. Straume, E. O., Gaina, C., Medvedev, S. & Nisancioglu, K. H. Global Cenozoic paleobathymetry with a focus on the Northern Hemisphere Oceanic gateways. Gondwana Res. 86, 126–143 (2020).

    Article  Google Scholar 

  152. Berner, R. A. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. Am. J. Sci. 304, 438–453 (2004).

    Article  Google Scholar 

  153. Parrish, J. T. Climate of the supercontinent Pangea. J. Geol. 101, 215–233 (1993).

    Article  Google Scholar 

  154. Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the Earth’s changing climate during the last 540 million years. Earth-Sci. Rev. 215, 103503 (2021).

    Article  Google Scholar 

  155. Ziegler, A. et al. Tracing the tropics across land and sea: Permian to present. Lethaia 36, 227–254 (2003).

    Article  Google Scholar 

  156. Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).

    Article  Google Scholar 

  157. Valentine, J. W. & Moores, E. M. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228, 657–659 (1970).

    Article  Google Scholar 

  158. Close, R. A., Benson, R. B. J., Saupe, E. E., Clapham, M. E. & Butler, R. J. The spatial structure of Phanerozoic marine animal diversity. Science 368, 420–424 (2020).

    Article  Google Scholar 

  159. Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. USA 114, 5653–5658 (2017).

    Article  Google Scholar 

  160. Butterworth, N. et al. Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining. Tectonics 35, 2847–2862 (2016).

    Article  Google Scholar 

  161. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).

    Article  Google Scholar 

  162. Park, Y., Swanson-Hysell, N. L., Lisiecki, L. E. & Macdonald, F. A. Evaluating the relationship between the area and latitude of large igneous provinces and Earth’s long-term climate state. Large Igneous Prov. Driv. Glob. Environ. Biot. Chang. https://doi.org/10.1002/9781119507444.ch7 (2021).

    Article  Google Scholar 

  163. Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L. & Jagoutz, O. Arc-continent collisions in the tropics set Earth’s climate state. Science 364, 181–184 (2019).

    Article  Google Scholar 

  164. Wright, N. M., Seton, M., Williams, S. E., Whittaker, J. M. & Müller, R. D. Sea level fluctuations driven by changes in global ocean basin volume following supercontinent break-up. Earth-Sci. Rev. 208, 103293 (2020).

    Article  Google Scholar 

  165. Conrad, C. P. The solid Earth’s influence on sea level. GSA Bull. 125, 1027–1052 (2013).

    Article  Google Scholar 

  166. Van Der Meer, D. G. et al. Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proc. Natl Acad. Sci. USA 111, 4380–4385 (2014).

    Article  Google Scholar 

  167. Brune, S., Williams, S. E. & Mueller, R. D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 10, 941–946 (2017).

    Article  Google Scholar 

  168. Hounslow, M. W., Domeier, M. & Biggin, A. J. Subduction flux modulates the geomagnetic polarity reversal rate. Tectonophysics 742, 34–49 (2018).

    Article  Google Scholar 

  169. Domeier, M., Magni, V., Hounslow, M. W. & Torsvik, T. H. Episodic zircon age spectra mimic fluctuations in subduction. Sci. Rep. 8, 1–9 (2018).

    Article  Google Scholar 

  170. Jian, D., Williams, S. E., Yu, S. & Zhao, G. Quantifying the link between the detrital zircon record and tectonic settings. J. Geophys. Res. Solid. Earth 127, e2022JB024606 (2022).

    Article  Google Scholar 

  171. Merdith, A. S. et al. Pulsated global hydrogen and methane flux at mid-ocean ridges driven by Pangea breakup. Geochem. Geophys. Geosyst. 21, e2019GC008869 (2020).

    Article  Google Scholar 

  172. Gernon, T. M. et al. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021). Exploration of the links between plate tectonics and records of atmospheric and ocean chemical changes over the past 410 Ma using deep-time data mining.

    Article  Google Scholar 

  173. Müller, R. D. et al. Evolution of Earth’s tectonic carbon conveyor belt. Nature 605, 629–639 (2022).

    Article  Google Scholar 

  174. Lithgow-Bertelloni, C. & Richards, M. A. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78 (1998). Examined the links between surface plate motions, mantle dynamics, plate driving forces and seismic tomographic imaging of the deep Earth.

    Article  Google Scholar 

  175. Torsvik, T. H., Steinberger, B., Gurnis, M. & Gaina, C. Plate tectonics and net lithosphere rotation over the past 150 My. Earth Planet. Sci. Lett. 291, 106–112 (2010).

    Article  Google Scholar 

  176. Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498, 479–482 (2013).

    Article  Google Scholar 

  177. Williams, S., Flament, N., Dietmar Müller, R. & Butterworth, N. Absolute plate motions since 130 Ma constrained by subduction zone kinematics. Earth Planet. Sci. Lett. 418, 66–77 (2015).

    Article  Google Scholar 

  178. Wolf, J. & Evans, D. A. Reconciling supercontinent cycle models with ancient subduction zones. Earth Planet. Sci. Lett. 578, 117293 (2022).

    Article  Google Scholar 

  179. Karlsen, K. S., Conrad, C. P. & Magni, V. Deep water cycling and sea level change since the breakup of Pangea. Geochem. Geophys. Geosyst. 20, 2919–2935 (2019).

    Article  Google Scholar 

  180. Coltice, N., Husson, L., Faccenna, C. & Arnould, M. What drives tectonic plates? Sci. Adv. 5, eaax4295 (2019).

    Article  Google Scholar 

  181. Rolf, T. & Tackley, P. J. Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048677 (2011).

    Article  Google Scholar 

  182. Mallard, C., Coltice, N., Seton, M., Müller, R. D. & Tackley, P. J. Subduction controls the distribution and fragmentation of Earth’s tectonic plates. Nature 535, 140–143 (2016).

    Article  Google Scholar 

  183. Ulvrova, M. M., Brune, S. & Williams, S. Breakup without borders: how continents speed up and slow down during rifting. Geophys. Res. Lett. 46, 1338–1347 (2019).

    Article  Google Scholar 

  184. Ulvrova, M. M., Coltice, N., Williams, S. & Tackley, P. J. Where does subduction initiate and cease? A global scale perspective. Earth Planet. Sci. Lett. 528, 115836 (2019).

    Article  Google Scholar 

  185. Bahadori, A. & Holt, W. E. Geodynamic evolution of southwestern North America since the Late Eocene. Nat. Commun. 10, 5213 (2019).

    Article  Google Scholar 

  186. Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004).

    Article  Google Scholar 

  187. Gurnis, M. et al. Creating 4-D Earth models using GPlates, CitcomS and the Geodynamic Framework. (earthbyte.org, 2019).

  188. Colli, L., Bunge, H.-P. & Schuberth, B. S. On retrodictions of global mantle flow with assimilated surface velocities. Geophys. Res. Lett. 42, 8341–8348 (2015).

    Article  Google Scholar 

  189. Hu, J., Gurnis, M., Rudi, J., Stadler, G. & Müller, R. D. Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago. Nat. Geosci. 15, 74–78 (2022).

    Article  Google Scholar 

  190. Seton, M. et al. Ridge subduction sparked reorganization of the Pacific plate–mantle system 60–50 million years ago. Geophys. Res. Lett. 42, 1732–1740 (2015).

    Article  Google Scholar 

  191. Bull, A. L., Domeier, M. & Torsvik, T. H. The effect of plate motion history on the longevity of deep mantle heterogeneities. Earth Planet. Sci. Lett. 401, 172–182 (2014).

    Article  Google Scholar 

  192. Heron, P. J., Murphy, J. B., Nance, R. D. & Pysklywec, R. N. Pannotia’s mantle signature: the quest for supercontinent identification. Geol. Soc. Lond. Spec. Publ. 503, 41–61 (2021).

    Article  Google Scholar 

  193. Bredow, E., Steinberger, B., Gassmöller, R. & Dannberg, J. How plume–ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track. Geochem. Geophys. Geosyst. 18, 2930–2948 (2017).

    Article  Google Scholar 

  194. Hu, J., Liu, L. & Gurnis, M. Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth. Nat. Commun. 12, 7271 (2021).

    Article  Google Scholar 

  195. Braun, J. The many surface expressions of mantle dynamics. Nat. Geosci. 3, 825–833 (2010).

    Article  Google Scholar 

  196. Shephard, G. E., Müller, R. D., Liu, L. & Gurnis, M. Miocene drainage reversal of the Amazon River driven by plate–mantle interaction. Nat. Geosci. 3, 870–875 (2010).

    Article  Google Scholar 

  197. Faccenna, C. et al. Role of dynamic topography in sustaining the Nile River over 30 million years. Nat. Geosci. 12, 1012–1017 (2019).

    Article  Google Scholar 

  198. Yang, A. & Yang, T. Controls on the present-day dynamic topography predicted from mantle flow models since 410 Ma. Geophys. J. Int. 225, 1637–1652 (2021).

    Article  Google Scholar 

  199. Ghelichkhan, S., Bunge, H.-P. & Oeser, J. Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses. Geophys. J. Int. 226, 1432–1460 (2021).

    Article  Google Scholar 

  200. Austermann, J. et al. The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period. Geology 43, 927–930 (2015).

    Article  Google Scholar 

  201. Sijp, W. P. & England, M. H. Effect of the drake passage throughflow on global climate. J. Phys. Oceanogr. 34, 1254–1266 (2004).

    Article  Google Scholar 

  202. Hutchinson, D. K. et al. Arctic closure as a trigger for Atlantic overturning at the Eocene–Oligocene transition. Nat. Commun. 10, 3797 (2019).

    Article  Google Scholar 

  203. Lunt, D. J., Valdes, P. J., Haywood, A. & Rutt, I. C. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Clim. Dyn. 30, 1–18 (2008).

    Article  Google Scholar 

  204. Ali, J. R. & Huber, M. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463, 653–656 (2010).

    Article  Google Scholar 

  205. Henehan, M. J. et al. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc. Natl Acad. Sci. USA 116, 22500–22504 (2019).

    Article  Google Scholar 

  206. Saupe, E. E. et al. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 13, 65–70 (2020).

    Article  Google Scholar 

  207. Jones, L. A., Mannion, P. D., Farnsworth, A., Bragg, F. & Lunt, D. J. Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nat. Commun. 13, 3120 (2022).

    Article  Google Scholar 

  208. Caballero, R. & Huber, M. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl Acad. Sci. USA 110, 14162–14167 (2013).

    Article  Google Scholar 

  209. Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F. & Deconinck, J.-F. A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nat. Commun. 7, 10316 (2016).

    Article  Google Scholar 

  210. Valdes, P. J., Scotese, C. R. & Lunt, D. J. Deep ocean temperatures through time. Clim. Past 17, 1483–1506 (2021).

    Article  Google Scholar 

  211. Zucker, A. A. & Light, D. Laptop programs for students. Science 323, 82–85 (2009).

    Article  Google Scholar 

  212. Libarkin, J. C. & Brick, C. Research methodologies in science education: visualization and the geosciences. J. Geosci. Educ. 50, 449–455 (2002).

    Article  Google Scholar 

  213. Müller, R. D. et al. The GPlates portal: cloud-based interactive 3D visualization of global geophysical and geological data in a web browser. PLoS ONE 11, e0150883 (2016).

    Article  Google Scholar 

  214. van Hinsbergen, D. J. J. et al. A paleolatitude calculator for paleoclimate studies. PLoS ONE 10, e0126946 (2015).

    Article  Google Scholar 

  215. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    Article  Google Scholar 

  216. Liu, L., Spasojević, S. & Gurnis, M. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322, 934–938 (2008).

    Article  Google Scholar 

  217. Wong Hearing, T. W. et al. Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate. Nat. Commun. 12, 3868 (2021).

    Article  Google Scholar 

  218. Brune, S., Williams, S. E. & Müller, R. D. Oblique rifting: the rule, not the exception. Solid Earth 9, 1187–1206 (2018).

    Article  Google Scholar 

  219. Crameri, F. et al. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat. Commun. 11, 3750 (2020).

    Article  Google Scholar 

  220. Zahirovic, S., Müller, R. D., Seton, M. & Flament, N. Tectonic speed limits from plate kinematic reconstructions. Earth Planet. Sci. Lett. 418, 40–52 (2015).

    Article  Google Scholar 

  221. Iaffaldano, G., Bodin, T. & Sambridge, M. Reconstructing plate-motion changes in the presence of finite-rotations noise. Nat. Commun. 3, 1048 (2012).

    Article  Google Scholar 

  222. Müller, R. D. et al. A tectonic-rules based mantle reference frame since 1 billion years ago — implications for supercontinent cycles and plate–mantle system evolution. Solid Earth Discuss https://doi.org/10.5194/se-2021-154 (2022).

    Article  Google Scholar 

  223. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. Geologic Time Scale 2020 (Elsevier, 2020).

  224. Seton, M., Gaina, C., Müller, R. D. & Heine, C. Mid-Cretaceous seafloor spreading pulse: fact or fiction? Geology 37, 687–690 (2009).

    Article  Google Scholar 

  225. Wessel, P. & Müller, R. D. Plate tectonics. Treatise Geophys. 6, 49–98 (2007).

    Article  Google Scholar 

  226. Van der Voo, R. The reliability of paleomagnetic data. Tectonophysics 184, 1–9 (1990).

    Article  Google Scholar 

  227. Meert, J. G. et al. The magnificent seven: a proposal for modest revision of the Van der Voo (1990) quality index. Tectonophysics 790, 228549 (2020).

    Article  Google Scholar 

  228. Scotese, C. R. A continental drift flipbook. J. Geol. 112, 729–741 (2004).

    Article  Google Scholar 

  229. Sambridge, M., Beghein, C., Simons, F. J. & Snieder, R. How do we understand and visualize uncertainty? Lead. Edge 25, 542–546 (2006). Though focused on seismological applications, provides a useful overview of how to deal with the uncertainties inherent within complex geoscientific models.

    Article  Google Scholar 

  230. Chamberlain, K. J., Lehnert, K. A., McIntosh, I. M., Morgan, D. J. & Wörner, G. Time to change the data culture in geochemistry. Nat. Rev. Earth Environ. 2, 737–739 (2021).

    Article  Google Scholar 

  231. Seton, M. et al. A global data set of present‐day oceanic crustal age and seafloor spreading parameters. Geochem. Geophys. Geosyst. 21, e2020GC009214 (2020).

    Article  Google Scholar 

  232. Wessel, P. et al. Semiautomatic fracture zone tracking. Geochem. Geophys. Geosyst. 16, 2462–2472 (2015).

    Article  Google Scholar 

  233. Doucet, L. S. et al. Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology 48, 159–163 (2019).

    Article  Google Scholar 

  234. Bradley, D. C. Passive margins through earth history. Earth-Sci. Rev. 91, 1–26 (2008).

    Article  Google Scholar 

  235. Condie, K. Changing tectonic settings through time: indiscriminate use of geochemical discriminant diagrams. Precambrian Res. 266, 587–591 (2015).

    Article  Google Scholar 

  236. Dutkiewicz, A. et al. Predicting sediment thickness on vanished ocean crust since 200 Ma. Geochem. Geophys. Geosyst. 18, 4586–4603 (2017).

    Article  Google Scholar 

  237. Li, X. et al. A high-resolution climate simulation dataset for the past 540 million years. Sci. Data 9, 371 (2022).

    Article  Google Scholar 

  238. Pohl, A., Wong Hearing, T., Franc, A., Sepulchre, P. & Scotese, C. R. Dataset of Phanerozoic continental climate and Köppen–Geiger climate classes. Data Brief 43, 108424 (2022).

    Article  Google Scholar 

  239. Kocsis, Á. T. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Sci. Rev. 213, 103463 (2021).

    Article  Google Scholar 

  240. Torsvik, T. H. & Cocks, L. R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2016).

  241. Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357–358, 68–77 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

M.S., S.E.W. and A.S.C. acknowledge the support of the Australian Research Council (M.S., DP200100966 and FT130101564; S.E.W., DP200100966, DP180102280 and FT210100557; A.S.C., FT120100340 and LP200301457). S.E.W. acknowledges support from the National Natural Science Foundation of China grant 41972237. M.D. was supported by the Research Council of Norway through its Centres of Excellence funding scheme, project 223272 (CEED). K.S. was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme, grant 639003 DEEP TIME. The authors also share their gratitude to the early pioneers of plate tectonics and those who championed the development of open-access plate tectonic models and tools as well as to their respective research groups for their contributions to plate model and workflow development. GPlates is supported by the AuScope National Collaborative Research Infrastructure System programme.

Author information

Authors and Affiliations

Authors

Contributions

M.S. conceived the work and led the writing of the manuscript. S.E.W. led the production of the figures. All authors contributed to the writing and reviewing of all components of the manuscript.

Corresponding author

Correspondence to Maria Seton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks B. Steinberger, D. van Hinsbergen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AuScope: https://www.auscope.org.au/

EarthCube: https://www.earthcube.org/

Global Paleomagnetic Database (GPMDB): http://gpmdb.net/

GPlates: https://www.gplates.org/

GSFML: https://gsfml.earthbyte.org/

IODP: https://www.iodp.org/

MagIC: https://www2.earthref.org/MagIC

Paleobiology Database: https://paleobiodb.org

Supplementary information

Glossary

Alkalic magmatism

Magmas that are distinguished by a high alkali metal oxide composition relative to silica, reflecting low degrees of partial melting and commonly found in continental rifts.

Continuously closing plate topologies

A method of creating a network of plate boundaries that combine to define a tectonic plate whose shape and size change through time.

Diffuse deformation

Areas where internal plate deformation is distributed over wide lateral areas rather than narrowly localized at a rigid plate boundary.

Earth System Models

(ESMs). Global models that integrate processes occurring in the biosphere, hydrosphere and lithosphere.

Fracture zones

Linear feature on the present-day sea floor which traces the direction of sea-floor spreading at palaeo-mid-ocean ridges.

Geocentric axial dipole

(GAD). On timescales of 105–106 years, the magnetic field of the Earth can be approximated by a magnetic dipole that is centred at the centre of the Earth and aligned parallel to the planetary spin axis.

Geomagnetic polarity timescale

Geological timescale linking the sequence of reversals of the geomagnetic field to geochronology and stratigraphy.

Hotspot

Volcanism (commonly intraplate) with distinct geochemical signatures, thought to be caused by a mantle plume, but with a much lower eruptive rate than a LIP.

Kimberlites

Ultramafic igneous rocks that are the main host rocks for diamonds and whose eruption sites have been linked to the edges of the large low shear velocity provinces.

Large igneous provinces

(LIPs). A large volume of igneous rock emplaced over a geologically short period, commonly ascribed to the first arrival of a mantle plume (the plume ‘head’) to the surface of the Earth.

Large low shear velocity provinces

(LLSVPs). Lowermost mantle structures of uncertain physical nature, defined by the robust observation that shear waves (and also P waves) propagate markedly slower than in the ambient mantle.

Low-temperature thermochronology

Application of radiometric dating to determine the time at which a mineral cooled below a ‘closure temperature’ (which is method-specific, but generally in the range ~70–400 °C), below which the radiogenic daughter products are retained.

Magnetic anomaly identifications

A spatiotemporal representation of a marine magnetic anomaly interpreted on the basis of a synthetic crustal magnetic model and the geomagnetic polarity timescale.

Mantle plumes

An upwelling of buoyant, hot mantle rock from the mantle, hypothesized to be the causative mechanism of large igneous provinces and time-progressive volcanic hotspot tracks.

Oceanic gateways

Narrow, shallow, diffuse connections between neighbouring oceans, which facilitate the large-scale exchange of water, heat, salinity and nutrients between ocean basins.

Orogenic belt

Zone of collision along convergent plate margins, resulting in the formation of a mountain range.

Passive margin

A non-active plate margin composed of stretched continental crust that was once the site of continental extension, which ultimately gave way to sea-floor spreading.

Plume generation zones

(PGZs). Marginal areas of the large low shear velocity provinces in the lowermost mantle, associated with strong lateral gradients in seismic wave velocities, proposed to be nucleation sites of mantle plumes.

Radiometric dating

A method to estimate the numerical age of igneous and metamorphic rocks, by measuring the decay products of radioactive isotopes in the constituent minerals of rocks.

Sea-floor-spreading isochrons

Lines of equal age drawn on the sea floor depicting the sea-floor-spreading record and theoretically representing palaeo-mid-ocean ridge locations.

Seamount

A topographically isolated submarine feature that rises from the sea floor, typically formed by volcanic activity.

Seismic tomography

A geophysical technique that renders 2D or 3D images of the interior structure of the Earth by analysing recordings of seismic waves that traversed the interior.

Small circles

A circle formed on the surface of a sphere by the intersection of a plane that does not pass through the centre of the sphere.

Stage rotations

Rotations about a Euler pole that describe the motion of a plate between two specific times.

Supercontinent

The aggregation of most continental crust into a single landmass.

Syn-rift sedimentary sequences

Sedimentary rocks deposited during continental rifting that are characterized by coarse-grained, poorly sorted terrestrial deposits.

Tectonic plates

A rigid body of crust and uppermost mantle, delimited against other plates by tectonically active boundaries such as subduction zones, mid-ocean ridges and transform faults.

True polar wander

(TPW). A rotation of the entire solid Earth in response to mass re-distributions that perturb the planetary moment of inertia, acting to restore the principal moment of inertia to the planetary spin axis.

Volcanic arcs

Linear, trench-parallel belt of volcanoes that develops about 80–100 km above a subducting slab and represents a key marker of convergent plate margins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seton, M., Williams, S.E., Domeier, M. et al. Deconstructing plate tectonic reconstructions. Nat Rev Earth Environ 4, 185–204 (2023). https://doi.org/10.1038/s43017-022-00384-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00384-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing